No notes, calculators or tools of any kind are permitted. There are 37 points in total. You need to show work to receive full credit.

## Good luck!

Problem 1. (6 points) Eve intercepts the ciphertext $c=(101101011)_{2}$. She knows it was encrypted with a stream cipher using the linear congruential generator $x_{n+1} \equiv 5 x_{n}+3(\bmod 8)$ as PRG.
Eve further knows that the plaintext begins with $m=(1110 \ldots)_{2}$. Break the cipher and determine the plaintext.

Problem 2. (5 points) Evaluate $40^{1613}(\bmod 17)$.

Problem 3. ( 6 points) Using the Chinese remainder theorem, determine all solutions to $x^{2} \equiv 16(\bmod 55)$.

## Problem 4. (4 points)

(a) Suppose $N$ is composite. $x$ is a Fermat liar modulo $N$ if and only if $\square$
(b) $8(\bmod 21)$ $\square$ is a Fermat liar is not a Fermat liar because $\square$
(scratch space: show your work for partial credit)

Problem 5. (2 points) Briefly outline the Fermat primality test.

Problem 6. (14 points) Fill in the blanks.
(a) The residue $x$ is invertible modulo $n$ if and only if
(b) $3^{-1}(\bmod 29) \equiv \square$.
(c) Modulo 29, there are $\square$ invertible residues, of which $\square$ are quadratic.
(d) Modulo 55, there are $\square$ invertible residues, of which $\square$ are quadratic.
(e) 24 in base 2 is $\square$
(f) How many solutions does the congruence $x^{2} \equiv 1(\bmod 105)$ have?

How many solutions does the congruence $x^{2} \equiv 9(\bmod 105)$ have? $\square$
(g) Despite its flaws, in which scenario is it fine to use the Fermat primality test?
$\square$
(h) The first 5 bits generated by the Blum-Blum-Shub PRG with $M=133$ using the seed 5 are

You may use that $16^{2} \equiv 123,25^{2} \equiv 93,36^{2} \equiv 99,92^{2} \equiv 85,93^{2} \equiv 4,99^{2} \equiv 92(\bmod 133)$.
(i) Using a one-time pad and key $k=(0011)_{2}$, the message $m=(1010)_{2}$ is encrypted to $\square$
(j) While perfectly confidential, the one-time pad does not protect against
(k) The LFSR $x_{n+31} \equiv x_{n+28}+x_{n}(\bmod 2)$ must repeat after $\square$ terms.
(l) Recall that, in a stream cipher, we must never reuse the key stream.

Nevertheless, we can reuse the key if we use a $\square$
(m) In order for a PRG to be suitable for use in a stream cipher, the PRG must be $\square$
(n) As part of the Miller-Rabin test, it is computed that $26^{147} \equiv 495,26^{294} \equiv 1(\bmod 589)$.

What do we conclude? $\square$

