

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 37 points in total. You need to show work to receive full credit.

## Good luck!

**Problem 1. (6 points)** Eve intercepts the ciphertext  $c = (101 \ 101 \ 011)_2$ . She knows it was encrypted with a stream cipher using the linear congruential generator  $x_{n+1} \equiv 5x_n + 3 \pmod{8}$  as PRG.

Eve further knows that the plaintext begins with  $m = (111 \ 0...)_2$ . Break the cipher and determine the plaintext.

**Problem 2.** (5 points) Evaluate  $40^{1613} \pmod{17}$ .

Show your work!

**Problem 3.** (6 points) Using the Chinese remainder theorem, determine all solutions to  $x^2 \equiv 16 \pmod{55}$ .

## Problem 4. (4 points)

| (a) Suppose $N$ is composite. $x$ is a Fermat liar modulo $N$ if and only if |  |
|------------------------------------------------------------------------------|--|
| (b) $8 \pmod{21}$ is a Fermat liar because because.                          |  |
| (scratch space: show your work for partial credit)                           |  |
|                                                                              |  |
|                                                                              |  |
|                                                                              |  |

Problem 5. (2 points) Briefly outline the Fermat primality test.

Problem 6. (14 points) Fill in the blanks.

| (a) | The residue $x$ is invertible modulo $n$ if and only if                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | $3^{-1} \pmod{29} \equiv  .$                                                                                                                  |
| (c) | Modulo 29, there are invertible residues, of which are quadratic.                                                                             |
| (d) | Modulo 55, there are invertible residues, of which are quadratic.                                                                             |
| (e) | 24 in base 2 is                                                                                                                               |
| (f) | How many solutions does the congruence $x^2 \equiv 1 \pmod{105}$ have?                                                                        |
|     | How many solutions does the congruence $x^2 \equiv 9 \pmod{105}$ have?                                                                        |
| (g) | Despite its flaws, in which scenario is it fine to use the Fermat primality test?                                                             |
|     |                                                                                                                                               |
| (h) | The first 5 bits generated by the Blum-Blum-Shub PRG with $M = 133$ using the seed 5 are                                                      |
|     | You may use that $16^2 \equiv 123$ , $25^2 \equiv 93$ , $36^2 \equiv 99$ , $92^2 \equiv 85$ , $93^2 \equiv 4$ , $99^2 \equiv 92 \pmod{133}$ . |
| (i) | Using a one-time pad and key $k = (0011)_2$ , the message $m = (1010)_2$ is encrypted to                                                      |
| (j) | While perfectly confidential, the one-time pad does not protect against                                                                       |
| (k) | The LFSR $x_{n+31} \equiv x_{n+28} + x_n \pmod{2}$ must repeat after terms.                                                                   |
| (l) | Recall that, in a stream cipher, we must never reuse the key stream.                                                                          |
|     | Nevertheless, we can reuse the key if we use a                                                                                                |
| (m) | In order for a PRG to be suitable for use in a stream cipher, the PRG must be                                                                 |
| (n) | As part of the Miller–Rabin test, it is computed that $26^{147} \equiv 495$ , $26^{294} \equiv 1 \pmod{589}$ .                                |
|     | What do we conclude?                                                                                                                          |

(extra scratch paper)