No notes, calculators or tools of any kind are permitted. There are 37 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (6 points) Eve intercepts the ciphertext $c=(101101011)_{2}$. She knows it was encrypted with a stream cipher using the linear congruential generator $x_{n+1} \equiv 5 x_{n}+3(\bmod 8)$ as PRG.

Eve further knows that the plaintext begins with $m=(1110 \ldots)_{2}$. Break the cipher and determine the plaintext.

Solution. Since $c=m \oplus P R G$, we learn that the initial piece of the keystream is $\mathrm{PRG}=m \oplus c=(101101011)_{2} \oplus$ $(1110 \ldots)_{2}=(0101 \ldots)_{2}$.

Since each x_{n} has 3 bits, we learn that $x_{1}=(010)_{2}=2$. Using $x_{n+1} \equiv 5 x_{n}+3(\bmod 8)$, we find $x_{2}=5, x_{3}=4, \ldots$ In other words, $\mathrm{PRG}=2,5,4, \ldots=(010101100 \ldots)_{2}$.

Hence, Eve can decrypt the ciphertext and obtain $m=c \oplus P R G=\left(\begin{array}{ll}101 & 101011\end{array}\right)_{2} \oplus(010101100)_{2}=(111000111)_{2}$.

Problem 2. (5 points) Evaluate $40^{1613}(\bmod 17)$.
Show your work!

Solution. First, $40^{1613} \equiv 6^{1613}(\bmod 17)$. Since $1613 \equiv 13(\bmod \phi(17))$, we have $6^{1613} \equiv 6^{13}(\bmod 17)$.
Using binary exponentiation, we find $6^{2} \equiv 2(\bmod 17), 6^{4} \equiv 2^{2}=4(\bmod 17), 6^{8} \equiv 4^{2} \equiv-1(\bmod 17)$.
In conclusion, $40^{1613} \equiv 6^{13}=6^{8} \cdot 6^{4} \cdot 6 \equiv-1 \cdot 4 \cdot 6 \equiv 10(\bmod 17)$.

Problem 3. (6 points) Using the Chinese remainder theorem, determine all solutions to $x^{2} \equiv 16(\bmod 55)$.

Solution. By the CRT:

$$
x^{2} \equiv 16(\bmod 55)
$$

$\Longleftrightarrow x^{2} \equiv 16(\bmod 5)$ and $x^{2} \equiv 16(\bmod 11)$
$\Longleftrightarrow x \equiv \pm 4(\bmod 5)$ and $x \equiv \pm 4(\bmod 11)$
Hence, there are four solutions $\pm 4, \pm a$ modulo 55 . To find one of the nontrivial ones, we solve the congruences $x \equiv 4(\bmod 5), x \equiv-4(\bmod 11)$:

$$
x \equiv 4 \cdot 11 \cdot \underbrace{11_{\bmod 5}^{-1}}_{1}-4 \cdot 5 \cdot \underbrace{5_{\bmod 11}^{-1}}_{-2} \equiv 44+40 \equiv 29 \equiv-26(\bmod 55)
$$

Hence, we conclude that $x^{2} \equiv 16(\bmod 55)$ has the four solutions $\pm 2, \pm 26(\bmod 55)$.

Problem 4. (4 points)

(a) Suppose N is composite. x is a Fermat liar modulo N if and only if
(b) $8(\bmod 21)$ is a Fermat liar is not a Fermat liar

Solution.

(a) x is a Fermat liar modulo N if and only if $x^{N-1} \equiv 1(\bmod N)$.
(b) 8 is a Fermat liar modulo 21 if and only if $8^{20} \equiv 1(\bmod 21)$.
$8^{2} \equiv 1(\bmod 21)$, so that $8^{20} \equiv 1(\bmod 21)$. Hence, 8 a Fermat liar modulo 21.

Problem 5. (2 points) Briefly outline the Fermat primality test.

Solution. Fermat primality test:

Input: number n and parameter k indicating the number of tests to run
Output: "not prime" or "possibly prime"
Algorithm:

Repeat k times:
Pick a random number a from $\{2,3, \ldots, n-2\}$.
If $a^{n-1} \not \equiv 1(\bmod n)$, then stop and output "not prime".
Output "possibly prime".

Problem 6. (14 points) Fill in the blanks.
(a) The residue x is invertible modulo n if and only if
(b) $3^{-1}(\bmod 29) \equiv \square$.
(c) Modulo 29, there are \square invertible residues, of which \square are quadratic.
(d) Modulo 55, there are \square invertible residues, of which \square are quadratic.
(e) 24 in base 2 is \square
(f) How many solutions does the congruence $x^{2} \equiv 1(\bmod 105)$ have? \square

How many solutions does the congruence $x^{2} \equiv 9(\bmod 105)$ have? \square
(g) Despite its flaws, in which scenario is it fine to use the Fermat primality test?
\square
(h) The first 5 bits generated by the Blum-Blum-Shub PRG with $M=133$ using the seed 5 are

You may use that $16^{2} \equiv 123,25^{2} \equiv 93,36^{2} \equiv 99,92^{2} \equiv 85,93^{2} \equiv 4,99^{2} \equiv 92(\bmod 133)$.
(i) Using a one-time pad and key $k=(0011)_{2}$, the message $m=(1010)_{2}$ is encrypted to \square
(j) While perfectly confidential, the one-time pad does not protect against
(k) The LFSR $x_{n+31} \equiv x_{n+28}+x_{n}(\bmod 2)$ must repeat after \square terms.
(l) Recall that, in a stream cipher, we must never reuse the key stream.

Nevertheless, we can reuse the key if we use a \square
(m) In order for a PRG to be suitable for use in a stream cipher, the PRG must be \square
(n) As part of the Miller-Rabin test, it is computed that $26^{147} \equiv 495,26^{294} \equiv 1(\bmod 589)$.

What do we conclude?

Solution.

(a) The residue x is invertible modulo n if and only if $\operatorname{gcd}(x, n)=1$.
(b) $3^{-1}(\bmod 29) \equiv 10$
(c) Modulo the prime 29, there are $\phi(29)=28$ invertible residues, of which $\frac{1}{2} \phi(29)=14$ are quadratic.
(d) Modulo 55, there are $\phi(55)=\phi(5) \phi(11)=40$ invertible residues, of which $\frac{1}{4} \phi(55)=10$ are quadratic.
(e) 24 in base 2 is $(11000)_{2}$.
(f) By the CRT, since $105=3 \cdot 5 \cdot 7$, the first congruence has $2 \cdot 2 \cdot 2=8$ solutions.

The second congruence only has $1 \cdot 2 \cdot 2=4$ solutions. (Note that $x^{2} \equiv 9(\bmod 3)$ only has one solution; namely, $x \equiv 0$.)
(g) Despite its flaws, it is fine to use the Fermat primality test for large random numbers.
(h) The first five bits generated by the Blum-Blum-Shub PRG with $M=133$ using the seed 5 are $1,1,0,0,1$ (obtained from $25,93,4,16,123)$.
(i) Using a one-time pad and key $k=(0011)_{2}$, the message $m=(1010)_{2}$ is encrypted to $(1001)_{2}$.
(j) While perfectly confidential, the one-time pad does not protect against tampering.
(k) The LFSR $x_{n+31} \equiv x_{n+28}+x_{n}(\bmod 2)$ must repeat after $2^{31}-1$ terms.
(l) We can reuse the key if we use a nonce.
(m) In order for a PRG to be suitable for use in a stream cipher, the PRG must be unpredictable.
(n) Since $495 \not \equiv \pm 1(\bmod 589)$, we conclude that 589 is not a prime.

