Sketch of Lecture 29 Mon, 4/3/2023

Further comments on RSA and ElGamal

Theorem 178. Determining the secret private key d in RSA is as difficult as factoring V.
Proof. Let us show how to factor N = pq if we know e and d.

e Write ed — 1 =2%m, where t is chosen as large as possible such that 2¢ divides ed — 1.
Since ed —1=0 (mod (p —1)(¢ — 1)) and 22 divides (p —1)(g — 1), we have t > 2.

e Pick a random invertible residue . Observe that z¢?~1=1 (mod N). In other words, ()2 =1.

Hence, the multiplicative order of 2" must divide 2°.
e Suppose that " has different order modulo p than modulo q.

Note. This works for at least half of the (invertible) residues x. If we are unlucky, we just
select another z.

Since both orders must divide 2¢, we may suppose z"* has order 2° modulo p, and larger order modulo q.
Then, 22" =1 (mod p) but 22 #1 (mod q).
Consequently, gcd (2™ — 1, N) = p so that we have found the factor p of N.

Note. Of course, we don't know s (because we don't know p and ¢), but we can just go
through all s=1,2,...,t — 1. One of these has to reveal the factor p. 0

However. It is not known whether knowing d is actually necessary for Eve to decrypt a given ciphertext ¢. This
remains an important open problem.

Example 179. (homework) Bob's public RSA key is N =323, e=101. Knowing d =77, factor
N using the approach of the previous theorem.

Solution. Here, de — 1 =7776=2°.243 so that t =5 and m = 243.

o Let's pick a=2. a™ =22%% =246 (mod 323) must have order dividing 2°.
ged (2462 — 1,323) = 19 (so we don't even need to check gcd (2462° — 1, 323) for s =2, 3,4)
Hence, we have factored N =17-19.

Comment. Among the ¢(323) =16 - 18 = 288 invertible residues a, only 36 would not lead to a factorization.
The remaining 252 residues all reveal the factor 19.

Another project idea. Run some numerical experiments to get a feeling for the number of residues that result
in a factorization.
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| Semantic security |

Definition 180. Bob's public key cryptosystem is semantically secure if Eve cannot do better
than guessing in the following challenge:

e Bob determines a random public and private key. The public key is given to Eve.

e Eve selects two plaintexts m1 and mo.

e Alice flips a fair coin and, accordingly, using the public key encrypts m; or ms as c.
e Eve now needs to decide whether c is the encryption of mj or ma.

For this definition to make precise mathematical sense, we need to assume that Eve's computing power is
somehow limited (typically, she is limited to polynomial-time algorithms).

Comment. Also, many variations exist of what semantic security exactly is. All of these try to capture the idea
that an attacker does not learn anything about m from knowing c. The one above is often referred to as IND-
CPA (Indistinguishability under Chosen Plaintext Attack).

Important comment. Realize that semantic security is a very strong property to ask for! In particular, this is much
stronger than what we usually think about in terms of security: you might call a cipher secure if it is “impossible”
for an attacker to get m from c. Semantic security is requiring that an attacker gets so little information from
¢ that she cannot even tell whether it came from (her own choices) m1 or mo.

Example 181. Is vanilla RSA semantically secure?

Solution. No. Eve can just encrypt both m1 and ms herself, and compare with c. She then knows for sure which
of the two was encrypted.

Comment. As mentioned before, in practice, RSA is never used in its vanilla (or “textbook’) version (unless
random plaintexts are encrypted). Instead, it is randomized (like EIGamal is by design) by padding the plaintext
with random stuff.

Check out OAEP: https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

The resulting RSA-OAEP has been proven semantically secure (under the “RSA assumption” that finding m from
¢ is hard).

Example 182. Is ElIGamal semantically secure?

Solution. Essentially, yes.

Recall that the public key is (p, g, h) = (p, g, g%).

The ciphertext is (c1,c2) = (g¥, h¥m) = (g¥, g*Ym). Eve needs to decide whether the m in there is m1 or ma.
Equivalently, she needs to decide whether r =cy/m1 (or 7 =c2/m2) equals g*¥ or not.

This is essentially the DDH problem.

Strictly speaking. Because of the issue with quadratic residues mentioned when we introduced the DDH
problem, ElGamal is not semantically secure in the sense we defined things. However, if we wanted (this is more
of a theoretical point), this issue could be fixed by not computing with all invertible residues modulo p, but only
with quadratic residues. We could further select p to be a safe prime, meaning that (p — 1) /2 is prime again,

in which case all quadratic residues (except 1) have order (p — 1) /2 (so that no similar games can be played
using orders of elements).

Practical implications. Indeed, Diffie—Hellman and ElGamal in practice often use safe primes p. In that case,
as we observed in Example 176, there are no elements of small order (besides 1 and —1). Since generating such
primes can be a bit expensive, it is common to use preselected ones. For instance, RFC 3526 lists six such primes
(together with a generator g) with 1536, 2048, ..., 8192 bits.

https://www.ietf.org/rfc/rfc3526.txt

Important. It is perfectly fine that p and g are not random in Diffie-Hellman or EIGamal. However, it is absolutely
crucial that = (and y) are random (generated using a cryptographically secure PRG).
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| Certain attacks on RSA and ElGamal |

Example 183. What is your feeling? Can we make RSA even more secure by allowing N to factor
into more than 2, say, 3 primes?
Solution. That doesn't seem like a good idea. Namely, observe that the security of RSA relies on adversaries

being unable to factor N. Allowing more factors of N (while keeping the size of N fixed) makes that task easier,
because more factors means that the factors are necessarily smaller.

Example 184. RSA has proven to be secure so far. However, it is easy to implement RSA in such
a way that it is insecure. One important but occasionally messed up part of RSA is that p and ¢q
must be unpredictable, and the only way to achieve that is to choose p, ¢ completely randomly
in some huge interval [M;, Mo).

e Forinstance, if N = pq has m digits and we know the first (or last) m /4 digits of p, then
we can efficiently factor V.

An adversary might know many digits of p if, for instance, we make the mistake of generating the
random prime p by considering candidates of the form 21923 4k for small (random) values of &k (21023
was chosen so that the resulting number has 1024 bits).

e Also, we must use a cryptographically secure PRG to generate p and q.

If using a “bad” PRG or choosing seeds with too little entropy, then (especially among a large number
of public keys generated this way) it becomes likely that (different) public keys N and N’ share a prime
factor p. In that case, everybody can determine p=gcd (IV, N’) and break both public keys.

Indeed. For instance, in a study of Lenstra et. al., millions of public keys were collected and compared.
Among the RSA moduli, about 0.2% shared a common prime factor with another one. That's terrible: if
(different) public keys N and N’ share a prime factor p, then everybody can determine p=gcd (N, N’)
and break both public keys.

http://eprint.iacr.org/2012/064.pdf

e In that direction, is the security of public key cryptosystems like RSA in any way compro-
mised when used by tens of millions of users?

As noted above, millions of people using “bad’ PRGs for generating RSA public keys make it likely that
this weakness can be practically exploited.

Similarly, for Diffie—-Hellman and ElGamal, it is common to use fixed primes p. While fine in principle,
this may be an issue if used by millions of users faced against an adversary Eve with vast resources. See,
for instance: https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/

Example 185. (side-channel attacks) For instance, by measuring the time it takes to decrypt
messages as m = c? (mod N) in RSA, Eve might be able to reconstruct the secret key d.

This timing attack, first developed by Paul Kocher (1997), is particularly unsettling because it illustrates that the
security of a system can be compromised even if mathematically everything is sound. This sort of attack is called
a side-channel attack. It attacks the implementation (software and/or hardware) rather than the cryptographic
algorithm.

See Section 6.2.3 in our book for more details on how d can be obtained in this attack.

In a similar spririt, there exist power attacks (measuring power instead of time during decryption) or fault attacks
(for instance, injecting errors during computations):

https://en.wikipedia.org/wiki/Side-channel_attack

How to prevent? Implement RSA in such a way that no inferences can be drawn from the time and power
consumption.
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Lesson. Do not implement crypto algorithms yourself!! Instead, use one of the well-tested open
implementations.

It's kind of sad, isn't it? Don't come up with your own ciphers. Don't implement ciphers yourself...

But it is important to realize just how easy it is to implement these algorithms in such a way that security is
compromised (even if the idea, intentions and algorithms are all sound and secure).

After advertising open implementations, let us end this discussion with a cautionary example in
that regard.

Example 186. The following story made lots of headlines in 2016:
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/

After a year, it was noticed that, in the open-source tool Socat (“Netcat++"), the Diffie-Hellman
key exchange was implemented using a hard-coded 1024 bit prime p (nothing wrong with that),
which wasn’t prime! Explain how this could be used as a backdoor.

Solution. The security of the Diffie-Hellman key exchange relies on the difficulty of taking discrete logarithms
modulo p. If we can compute = in h = g® (mod p), then we can break the key exchange.

Now, if p=p1p2, then we can use the CRT to find « by solving the two (much easier!) discrete logarithm problems

x

h= g% (modp1), h=g”® (modp2).
This is an example of a NOBUS backdoor (“nobody but us"), because the backdoor can only be used by the
person who knows the (secret) factorization of p.

Comment. In the present case, the Socat “prime’ p actually has the two small factors 271 and 13597, and
p/(271-13597) is still not a prime (but nobody has been able to factor it). This might hint more at a foolish
accident than a malicious act.

Important follow-up question. Of course, the issue has been fixed and the composite number has been replaced
by the developers with a large prime. However, should we trust that it really is a prime?

We don't need to trust anyone because primality checking is simple! We can just run the Miller—Rabin test N
times. If the number was composite, there is only a 4—N chance of us not detecting it. (In OpenSSL, for instance,
N =40 and the chance for an error, 2789 is astronomically low.) Both Fermat and Miller—Rabin instantly detect
the number here to be composite (for certain).

Comment. This illustrates both what's good and what's potentially problematic about open source projects.
The potentially problematic part for crypto is that Eve might be among the people working on the project. The
good part is that (hopefully!™) many experts are working on or looking into the code. Thus, hopefully, any
malicious acts on Eve's part should be spotted soon (in fact, with proper code review, should never make it into
any production version). Of course, this “hope” requires ongoing effort on the parts of everyone involved, and
the willingness to fund such projects.

*However, sometimes very few people are involved in a project, despite it being used by millions of users. For
instance, see: https://en.wikipedia.org/wiki/Heartbleed
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Example 187. (short plaintext attack on RSA) Suppose a 56bit DES key (or any other short
plaintext) is written as a number m ~ 2°6~ 101%-? and encrypted as ¢ =m® (mod N).

Eve makes two lists:
e cx ¢ (modN) forx=1,2,...,109
e y° (modN) for y=1,2,...,10°

If there is a match between the lists, that is cx~¢=y® (mod N), then ¢= (zy)¢ (mod N) and Eve has learned
that the plaintext is m =xy.

This attack will succeed if m is the product of two integers z, y (up to 109). This is the case for many integers m.
Another project idea. Quantify how many integers factor into two small factors.

How to prevent? To prevent this attack, the plaintext can be padded with random bits before being encrypted.
Recall that we should actually never use vanilla RSA (unless with random plaintexts) and always use a securely
padded version instead!

Example 188. For RSA, does double (or triple) encryption improve security?

(a) Say, if Bob asks people to send him messages first encrypted with a first public key (N, e1)
and then encrypted with a second public key (IV, e3).

(b) Or, what if Bob asks people to send him messages first encrypted with a first public key
(N1, e1) and then encrypted with a second public key (Vo e3).

Solution.

(a) No, this does not result in any additional security.

After one encryption, ¢c; = m®' (mod N) and the final ciphertext is c2 = c{* (mod N). However, note
that co =m*°? (mod N), which is the same as encryption with the single public key (N, ejes).

(b) This adds only a negligible bit of security and hence is a bad idea as well. The reason is that an attacker
able to determine the secret key for (N1, e1) is likely just as able to determine the secret key for (Na, e2),
meaning that the attack would only take twice as long (or two computers). That's only a tiny bit of
security gained, somewhat comparable to increasing N from 1024 to 1025 bits. If heightened security is
wanted, it is better to increase the size of N in the first place.

[Make sure you see how the situation here is different from the situation for 3DES.]

Example 189. (common modulus attack on RSA) Alice encrypts m using each of the RSA
public keys (N, e1) and (N, e2) so that the ciphertexts are ¢; = m° (mod N) and ¢y =
m®* (mod V). Eve might be able to figure out m from ¢; and ¢3!! How and when?

Solution. The crucial observation is that c{cy = m®®m®Y = me*+eY (mod N). Eve can choose = and y.

She knows m if she can arrange = and y such that ejz + eqy = 1. This is possible if gcd (e1,e2) =1, in which
case Eve would use the extended Euclidean algorithm to determine appropriate x and y.

A scenario. Bob's public RSA key is (IV, e). However, when Alice requests this public key from Bob, her message
gets intercepted by Eve who instead sends (IV, e3) back to Alice, where eg differs from e in only one bit. Alice
uses (N, e2) to encrypt her message and sends ca to Bob. Of course, Bob fails to decrypt Alice’s message and so
resends his public key to Alice (this time, Eve doesn't intervene). Alice now uses ([N, e) to encrypt her message
and send c to Bob.

Since e — eg = £2", we have gcd (e, e2) =1 (why?!), so that Eve can determine m as explained above.

Comment on that scenario. From a practical point of view, we can argue that, if Eve can trick Alice into
using a modified version of Bob's public key, then she might as well give a completely new public key (that Eve
created) to Alice, in which case she can immediately decipher co. That's certainly true. However, that way, Eve's
malicious intervention would be plainly visible as such.
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Example 190. (chosen ciphertext attack on RSA) Show that RSA is not secure under a chosen
ciphertext attack.

First of all, let us recall that in a chosen ciphertext attack, Eve has some access to a decryption device. In the
present case, we mean the following: Eve is trying to determine m from c. Clearly, we cannot allow her to use
the decryption device on ¢ (because then she has m and nothing remains to be said). However, Eve is allowed
to decrypt some other ciphertext ¢’ of her choosing (hence, “chosen ciphertext”).

You may rightfully say that this is a strange attacker, who can decrypt messages except the one of particular
interest. This model is not meant to be realistic; instead, it is important for theoretical security considerations:
if our cryptosystem is secure against this (adaptive) version of chosen ciphertext attacks, then it is also secure
against any other reasonable chosen ciphertext attacks.

Solution. RSA is not secure under a chosen ciphertext attack:
Suppose ¢ =m¢ (mod N) is the ciphertext for m.

Then, Eve can ask for the decryption m’ of ¢/ =2%c (mod N). Since ¢/ =(2m)¢ (mod N), Eve obtains m’ =2m,
from which she readily determines m =2"'m’ (mod N).

Comment. On the other hand, RSA-OAEP is provably secure against chosen ciphertext attacks. Recall that,
in this case, m is padded prior to encryption. As a result, 2m or, more generally am, is not going to be a valid
plaintext.

Example 191. What we just exploited is that RSA is multiplicatively homomorphic.

Multiplicatively homomorphic means the following: suppose m1 and mg are two plaintexts with ciphertexts c;
and ca. Then, (the residue) mims has ciphertext cjco.

[That is, multiplication of plaintexts translates to multiplication of ciphertexts, and vice versa. Mathematically,
this means that the map m — ¢ is a homomorphism (with respect to multiplication).]

Indeed, for RSA, ¢; =m{ and co =mS5, so that cico =mimS5=(m1m2)¢ (mod N) is the ciphertext for mimo.

Why care? In our previous example, being multiplicatively homomorphic was a weakness of RSA (which is
“cured” by RSA-OAEP). However, there are situations where homomorphic ciphers are of practical interest.
With a homomorphic cipher, we can do calculations using just the ciphertexts without knowing the plaintexts
(for instance, the ciphertexts could be encrypted (secret) votes, which could be publicly posted; then anyone
could add up (in an additively homomorphic system) these votes into a ciphertext of the final vote count; the
advantage being that we don’t need to trust an authority for that count). The search for a fully homomorphic
encryption scheme is a hot topic. For a nice initial read, you can find more at:

https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/

Example 192. (chosen ciphertext attack on EIGamal) Show that EIGamal is not secure under
a chosen ciphertext attack.

Solution. Recall, again, that in a chosen ciphertext attack, Eve is trying to determine m from ¢ and Eve has
access to a decryption device, which she can use, except not to the ciphertext c in question.

Suppose c=(c1,c2) =(g¥, g*¥m) is the ciphertext for m. Then (c1,2c2) = (g¥, g*¥Y2m) is a ciphertext for 2m.
Hence, Eve can ask for the decryption of ¢’ = (c¢1, 2¢2), which gives her m’ = 2m, from which she determines
m=2"1m’ (mod p).

In fact, again, the reason that EIGamal is not secure under a chosen ciphertext attack is that it
is multiplicatively homomorphic.

Example 193. Show that EIGamal is multiplicatively homomorphic.

Solution. Let (g¥', g*¥m) be a ciphertext for m1, and (g¥?, g*Y>my2) a ciphertext for ma.

The product (component-wise) of the ciphertexts is (g¥' 12, gm(leryz)mlmg), which is a ciphertext for mims.
So, again, the product of ciphertexts corresponds to the product of plaintexts.
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A quick summary of some aspects of RSA and ElGamal.

e As long as appropriate key sizes are used, both RSA and ElGamal appear secure.

About the same key size needed for both: at least 1024 bits. By now, better 2048 bits.

e The security of both RSA and ElGamal can be compromised by using a cryptographically
insecure PRG to generate the secret pieces p, ¢ (for RSA) or = (for EIGamal).

e It is important to have different ciphers, especially ones that rely on the difficulty of
different mathematical problems.
Comment. Factoring N = pg and computing discrete logarithms modulo p are the two different
problems for RSA and ElGamal, respectively. It is not known whether the ability to solve one of
them would make it significantly easier to also solve the other one. However, historically, advances

in factorization methods (like the number field sieve) have subsequently lead to similar advances in
computing discrete logarithms. Both problems seem of comparable difficulty.

e Both are multiplicatively homomorphic, but RSA loses this property when padded.
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