
Sketch of Lecture 27 Fri, 3/24/2023

The ElGamal public key cryptosystem and discrete logarithms

Whereas the security of RSA relies on the difficulty of factoring, the security of ElGamal and
Diffie�Hellman relies on the difficulty of computing discrete logarithms.

Discrete logarithms

Suppose b= ax (modN). Finding x is called the discrete logarithm problem mod N . If N is
a large prime p, then this problem is believed to be difficult.
Note. If b=ax, then x= loga(b). Here, we are doing the same thing, but modulo N . That's why the problem
is called the discrete logarithm problem.

Example 166. Find x such that 4� 3x (mod 7).
Solution. We have seen in Example 151 that 3 is a primitive root modulo 7. Hence, there must be such an x.
Going through the possibilities (32� 2, 33� 6, 34� 4), we find x=4, because 34� 4 (mod7).

Example 167. Find x such that 3� 2x (mod101).
Solution. Let us check that the solution is x = 69. Indeed, a quick binary exponentiation confirms that
269� 3 (mod101). (Do it!)
The point is that it is actually (believed to be) very difficult to compute these discrete logarithms. On the other
hand, just like with factorization, it is super easy to verify the answer if somebody tells us the answer.
Comment. We can check that 2 is a primitive root modulo 101. That is, 2 (mod101) has (multiplicative) order
100. That means every equation 2x� a (mod101), where a�/ 0, has a solution.

Diffie�Hellman key exchange

(Diffie�Hellman key exchange)

� Alice and Bob select a large prime p and a primitive root g (mod p).

� Bob randomly selects a secret integer x and reveals gx (mod p) to everyone.

Alice randomly selects a secret integer y and reveals gy (mod p) to everyone.

� Alice and Bob now share the secret gxy (mod p).
Indeed, Alice can compute gxy=(gx)y using the public gx and her secret y.
Likewise, Bob can compute gxy=(gy)x using the public gy and his secret x.

Why is this secure? We need to see why eavesdropping Eve cannot (simply) obtain the secret gxy (mod p).
She knows g; gx; gy (mod p) and needs to find gxy (mod p). This is the computational Diffie�Hellman
problem (CDH), which is believed to be hard (it would be easy if we could compute discrete logarithms).

Example 168. You are Eve. Alice and Bob select p = 53 and g = 5 for a Diffie�Hellman key
exchange. Alice sends 43 to Bob, and Bob sends 20 to Alice. What is their shared secret?
Solution. If Alice's secret is y and Bob's secret is x, then 5y� 43 and 5x� 20 (mod53).
Since we haven't learned a better method, we just compute 52; 53; ::: until we find 43 or 20:
52= 25, 53� 19, 54� 19 � 5�¡11, 55�¡11 � 5�¡2, 56�¡2 � 5�¡10� 43 (mod53).
Hence, Alice's secret is y=6. The shared secret is 206� 9 (mod53).
Note. We don't need to find Bob's secret. [It is x= 11.]

Armin Straub
straub@southalabama.edu

62



ElGamal encryption

Proposed by Taher ElGamal in 1985

The original paper is actually very readable: https://dx.doi.org/10.1109/TIT.1985.1057074

(ElGamal encryption)

� Bob chooses a prime p and a primitive root g (mod p).
Bob also randomly selects a secret integer x and computes h= gx (mod p).

� Bob makes (p; g; h) public. His (secret) private key is x.

� To encrypt, Alice first randomly selects an integer y.

Then, c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).

� Bob decrypts m= c2c1
¡x (mod p).

Why does decryption work? c2c1
¡x=(hym)(gy)¡x=((gx)ym)(gy)¡x=m (mod p)

More conceptually, the key idea (featured in Diffie�Hellman) that makes ElGamal encryption work is that Alice
(her private secret is y) and Bob (his private secret is x) actually share a secret: gxy

Note that encryption is just multiplying m with the shared secret hy= gxy. Likewise, decryption is division by
the shared secret c1

x= gxy.
Comment. For ElGamal, the message space actually is f1; 2; :::; p¡ 1g. m=0 is not permitted.
That's, of course, no practical issue. For instance, we could simply identify f1;2; :::; p¡ 1g with f0;1; :::; p¡2g
by adding/subtracting 1.
Comment. p and g don't have to be chosen randomly. They can be reused. In fact, it is common to choose p
to be a �safe prime� (see next comment), with specific pre-selected choices listed, for instance, in RFC 3526.
Advanced comment. Note that in order to check whether g is a primitive root modulo p, we need to be able
to factor p¡ 1, which in general is hard (2 is an obvious factor, but other factors are typically large and, in fact,
we need them to be large in order for the discrete logarithm problem to be difficult). It is therefore common to
start with a prime n and then see if 2n+1 is prime as well, in which case we select p=2n+1. Such primes p
[primes such that (p¡ 1)/2 is prime, too] are called safe primes (more later).
On the other hand, g doesn't necessarily have to be a primitive root. However, we need the group generated by
g (the elements 1; g; g2; g3; :::) to be large. For more fancy cryptosystems, we can even replace these groups
with other groups such as those generated by elliptic curves.

Example 169. Bob chooses the prime p= 31, g= 11, and x=5. What is his public key?

Solution. Since h= gx (mod p) is h� 115� 6 (mod31), the public key is (p; g; h)= (31; 11; 6).
Comment. Bob's secret key is x=5. In principle, an attacker can compute x from 11x�6 (mod31). However,
this requires computing a discrete logarithm, which is believed to be difficult if p is large.

Example 170. Bob's public ElGamal key is (p; g; h)= (31; 11; 6).

(a) Encrypt the message m=3 (�randomly� choose y=4) and send it to Bob.

(b) Determine Bob's private key from his public key.

(c) Using Bob's private key, decrypt c=(9; 13).

Armin Straub
straub@southalabama.edu

63

https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074
https://dx.doi.org/10.1109/TIT.1985.1057074


Solution.

(a) The ciphertext is c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).
Here, c1= 114� 9 (mod31) and c2=64 � 3� 13 (mod31). Hence, the ciphertext is c= (9; 13).

(b) To find Bob's secret key x, we need to solve 11x� 6 (mod31). This yields x=5.
(Since we haven't learned a better method, we just try x=1; 2; 3; ::: until we find the right one.)

Comment. Alternatively, after having done the first part, we know that m= c2c1
¡x (mod p) takes the

form 3= 13 � 9¡x (mod31), which is equivalent to 9x=13 � 3¡1� 25 (mod31). While this also reveals
x=5, there is an issue with this approach. Can you see it?
[The issue is that 9 (which is c1 and could be anything) does not have to be a primitive root. In fact, 9 is
not a primitive root modulo 31. Accordingly, 9x� 25 (mod31) does not have a unique solution: x=20
is another one (and does not correspond to Bob's private key).]

(c) We decrypt m= c2c1
¡x (mod p).

Here, m= 13 � 9¡5� 3 (mod31).
Comment. One option is to compute 9¡1�7 (mod31), followed by 9¡5�75�5 (mod31) and, finally,
13 � 9¡5� 13 � 5� 3 (mod31). Another option is to begin with 9¡5� 925 (mod31) (by Fermat's little
theorem).

Example 171. (extra) Bob's public ElGamal key is (p; g; h)= (23; 10; 11).

(a) Encrypt the message m=5 (�randomly� choose y=2) and send it to Bob.

(b) Encrypt the message m=5 (�randomly� choose y=4) and send it to Bob.

(c) Break the cryptosystem and determine Bob's secret key.

(d) Use the secret key to decrypt c=(8; 7).

(e) Likewise, decrypt c=(18; 19).

Solution.

(a) The ciphertext is c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).

Here, c1= 102� 8 (mod23) and c2= 112 � 5� 6 � 5� 7 (mod23). Hence, the ciphertext is c=(8; 7).

(b) Now, c1= 104� 18 (mod23) and c2= 114 � 5� 13 � 5� 19 (mod23) so that c= (18; 19).

(c) To find Bob's secret key x, we need to solve 10x� 11 (mod23). This yields x=3.
(Since we haven't learned a better method, we just try x=1; 2; 3; ::: until we find the right one.)

(d) We decrypt m= c2c1
¡x (mod p).

Here, m=7 � 8¡3� 7 � 4� 5 (mod23), as we knew from the first part.

[8¡1� 3 (mod23), so that 8¡3� 33� 4 (mod23). Or, use Fermat: 8¡3� 819� 4 (mod23).]

(e) In this case, m= 19 � 18¡3� 19 � 16� 5 (mod23), as we knew from the second part.

Armin Straub
straub@southalabama.edu

64


