
Sketch of Lecture 13 Wed, 2/8/2023

The Blum-Blum-Shub PRG

The Blum-Blum-Shub PRG is an example of a PRG, which is believed to be unpredictable.
More precisely, it has been shown that the ability to predict its values is equivalent to being able to efficiently
solve the quadratic residuosity problem (which is believed to be hard). Currently, the best way to �solve� the
quadratic residuosity problem mod M relies on factoring M . However, factoring large numbers is considered to
be hard (and lots of crypto relies on that).
Quadratic residuosity problem. Given big M = pq and a residue x moduloM , decide whether x is a quadratic
residue. (AboutM /4 are quadratic residues (the exact number is �(M)/4=(p¡1)(q¡1)/4);M /2 are easily
determined to be nonsquare using the Jacobi symbol [don't worry if you haven't heard about that].)

(Blum-Blum-Shub PRG) Let M = pq where p; q are large primes � 3 (mod 4).
From the seed y0, we generate yn+1� yn2 (modM).
The random bits xn we produce are yn (mod 2) (i.e. xn= least bit of(yn)).

B-B-S is very slow, and mostly of theoretical value. However, as indicated above, it is interesting because it is
indeed unpredictable (to anyone not knowing the factorization of M) if an important number theory problem
(the quadratic residuosity problem) is �hard� (this can be made precise), as is believed to be the case.
Why the conditions on p and q? Recall from the CRT that an invertible quadratic residue x2 moduloM = pq
has exactly four squareroots �x, �y. The condition 3 (mod 4) guarantees that, of these four, exactly one is
itself a quadratic residue. As a consequence, the mapping y 7! y2 (modM) is 1-1 when restricted to invertible
quadratic residues (see below).
Comment. For obvious reasons, the seed y0��1 (modM) should be excluded. Also, for the above considera-
tions to apply, the seed needs to be coprime toM . However, we don't need to worry about that: running into a
factor of M by accident is close to impossible (recall that nobody should be able to factor M even on purpose
and with lots of time and resources).
Comment. To increase speed, at the expense of some security, we can also take several, say k, bits of yn (as
long as k is small, say, k6 log2log2M).

Example 83. Generate random bits using the B-B-S PRG with M = 77 and seed 3.
Solution. With y0= 3, we have y1� y0

2=9, followed by y2� y1
2� 4 (mod77), y3� 16, y4� 25, y5� 9, so

that the values yn now start repeating.
These numbers are, however, not the output of the PRG. We only output the least bit of the numbers yn, i.e. the
value of yn (mod2). For y1� 9 we output 1, for y2� 4 we output 0, for y3� 16 we output 0, for y4� 25 we
output 1, and so on.
In other words, the seed 3 produces the sequence 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; ::: of period 4.
Comment. Note that it was completely to be expected that the numbers repeat. In fact, we immediately see
that the number of possible yn is at most the number of invertible quadratic residues, of which there are only
�(77)/4= 15.

Armin Straub
straub@southalabama.edu

28



Example 84.

(a) List all invertible quadratic residues modulo 21. Compute the square of all these residues.

(b) Repeat the first part modulo 33 and modulo 35. When computing the squares of these,
do you notice a difference modulo 35?
[Note that 35=5 � 7 with 5� 1 (mod4). This case is excluded in the B-B-S PRG.]

Solution. (final answers only)

(a) Among the �(21) = 12 many invertible elements, the squares are 1; 4; 16 (exactly a quarter).
Computing the squares: 12� 1, 42� 16, 162� 4 (mod21). Note that the squares are all different!

(b) Modulo 33: among the �(33)=20 many invertible elements, the squares are 1;4;16;25;31�82 (exactly
a quarter). Computing the squares: 12� 1, 42� 16, 162� 25, 252� 31, 312� 4 (mod33). Again, all
the squares are different!
Modulo 35: among the �(35) = 24 many invertible elements, the squares are 1; 4; 9; 11 � 92; 16;
29 � 82 (exactly a quarter). Computing the squares: 12 � 1, 42 � 16, 92 � 11, 112 � 16, 162 � 11,
292� 1 (mod35). Observe that these are not all different: for instance, 92� 162 (mod35).

Advanced comment. The map x 7! x2 (mod p) restricted to invertible quadratic residues is 1-1 if and only if
¡1 is not a quadratic residue (which, by the next result, is equivalent to p� 3 (mod4)).
[Sketch of proof. The map is 1-1 if and only if, for each invertible quadratic residue x2, exactly one of the two
square roots �x is itself a quadratic residue. This is equivalent to ¡1 not being a quadratic residue.
Indeed, if ¡1 is a quadratic residue, then x and ¡x are either both quadratic residues or both not.
On the other hand, if not exactly one of �x is a quadratic residue then, because exactly half of the invertible
residues are quadratic, there would be some pair of residues �z which are both quadratic. But then ¡zz¡1�¡1
would be a quadratic residue.]

Theorem 85. ¡1 is a quadratic residue modulo (an odd prime) p if and only if p� 1 (mod 4).
In other words, the quadratic congruence x2�¡1 (mod p) has a solution if and only if p� 1 (mod4).

Solution. Let us first see that p� 1 (mod4) is necessary. Assume x2�¡1 (mod p). Then, by Fermat's little
theorem, xp¡1� 1 (mod p). On the other hand, xp¡1= (x2)(p¡1)/2� (¡1)(p¡1)/2 (mod p). We therefore
need (¡1)(p¡1)/2 = 1, which is equivalent to (p ¡ 1)/2 being even. Which is equivalent to p � 1 (mod 4).
(Make sure that's absolutely clear!)

On the other hand, assume that p � 1 (mod 4). We will show that x =
�
p¡ 1

2

�
! has the property that

x2�¡1 (mod p). Indeed,��
p¡ 1
2

�
!

�
2

=(¡1)(p¡1)/2
�
1 � 2 � ::: � p¡ 1

2

�
2

= (�1) � (�2) � ::: �
�
�p¡ 1

2

�
�¡1 (mod p):

[Here, (�1) � (�2)��� is short for 1 � (¡1) �2 � (¡2)���.] For the final congruence, observe that �1;�2; :::;�p¡ 1

2
is

a complete set of all nonzero residues. When multiplying all residues, each will cancel with its (modular) inverse,
except the ones that are their own inverse. But a �a� 1 (mod p) has only the solution a��1, so that �1 are
the only residues not canceling.
Comment. The final step of our argument is known as Wilson's congruence: (p¡ 1)!�¡1 (mod p).

Armin Straub
straub@southalabama.edu

29



Theorem 86. (advanced) Let M = pq where p; q are primes � 3 (mod 4). Then the sequence
generated by yn+1� yn2 (modM) repeats with period dividing lcm (�(p¡ 1); �(q¡ 1)).
In particular, the period of the corresponding B-B-S PRG divides lcm (�(p¡ 1); �(q¡ 1)).

Proof.

� Observe that the numbers are yn= yn¡1
2 = yn¡2

4 = :::= y0
2n (modM). Hence, yn� y0

2n (modM).

� Instead of determining the period directly modulo M = pq, we determine the periods modulo p and q.
[Why? By the CRT, ym� yn (modM) if and only if ym� yn (mod p) and ym� yn (mod q).]
The period modulo M then is the lcm of of the two periods modulo p and q.

� ym� yn (mod p)

() y0
2m� y0

2n (mod p)
(= 2m� 2n (mod�(p))

[it would be �()� with 2m� 2n (modk) where k is the order of y0 (mod p)]
() 2m� 2n (mod p¡ 1)

[note that 2 is not invertible (mod p¡ 1); but 2 is invertible
�
mod p¡ 1

2

�
because p� 3 (mod4)]

() 2m¡1� 2n¡1
�
mod p¡ 1

2

�
[note that m;n> 1]

(= m�n
�
mod�

�
p¡ 1
2

��
[again, it would be �()� with m�n (modk) where k is the order of 2

�
mod p¡ 1

2

�
]

� In other words, the period m¡n modulo p divides �
�
p¡ 1
2

�
= �(p¡ 1).

Comment. Here we used p�3 (mod4) to conclude �
�
p¡ 1
2

�
= �(p¡ 1). Indeed, in that case, p¡ 1 is

divisible by 2 but not by 4. Hence, 2 and p¡ 1

2
are coprime, so that �(p¡1)=�(2)�

�
p¡ 1

2

�
=�

�
p¡ 1

2

�
.

� By the CRT, the period modulo M = pq divides lcm (�(p¡ 1); �(q¡ 1)). �

Example. In Example 83, we had M =7 � 11, so that the period of the PRG must divide lcm (�(6); �(10)) =
lcm (2; 4)=4.
Comment. In practice, people therefore say that, for the cycle length of B-B-S to be large, gcd (�(p ¡ 1);
�(q¡ 1)) should be small.

Armin Straub
straub@southalabama.edu

30



Example 87. We mentioned that the unpredictability of the B-B-S PRG relies on the difficulty
of factoring large numbers. Here's an indication how difficult it seems to be. In 1991, RSA
Laboratories challenged everyone to factor several numbers including:
1350664108659952233496032162788059699388814756056670275244851438515265\
1060485953383394028715057190944179820728216447155137368041970396419174\
3046496589274256239341020864383202110372958725762358509643110564073501\
5081875106765946292055636855294752135008528794163773285339061097505443\
34999811150056977236890927563

Since then, nobody has been able to factor this 1024 bit number (309 decimal digits). Until 2007,
cash prizes were offered up to 200,000 USD, with 100,000 USD for the number above.

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Let us illustrate how to actually use this number in the B-B-S PRG.

Sage] rsa = Integer("135066410865995223349603216278805969938881475605667027524485143851\
526510604859533833940287150571909441798207282164471551373680419703\
964191743046496589274256239341020864383202110372958725762358509643\
110564073501508187510676594629205563685529475213500852879416377328\
533906109750544334999811150056977236890927563")

Sage] seed = randint(2,rsa-2)

Sage] y = seed; prg = []

Sage] for i in [1..25]:
y = power_mod(y, 2, rsa)
prg.append(y % 2)

Sage] prg

[0; 1; 0; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 1; 0; 0; 1; 0; 1; 0; 1]

If you are able, even after gigabytes of pseudorandom bits, to predict the next bits with an accuracy
better than 50% (which is just pure guessing), then you likely have a shot at factoring the big
integer. You would be the first!

Of course, it is not impressive to see a few random bits in the example above. After all, the seed
(which you don't know!) itself consists of 1024 random bits. The whole point is that we can, from
these 1024 random bits, produce gigabytes of further pseudorandom bits. As of this day, no one
would be able to distinguish these from truly random bits.

While all of this works nicely, B-B-S is considered to be too slow for most practical purposes.
Comment. Note that M =135:::563� 3 (mod4). Hence it cannot be a product of primes p; q which are both
3 (mod4).

Example 88. (extra) Generate random bits using the B-B-S PRG with M = 209 and seed 10.
What is the period of the generated sequence? (Then repeat with seed 25.)
Solution. (final answer only) The seed 10 produces the sequence 0; 1; 0; 1; 1; 1; ::: of period 6.
The seed 25 generates the sequence 1; 0; 0; 1; 1; 0; 1; 0; 0; 0; 1; 1; ::: of period 12.
[By the way, it is an excellent idea to let Sage assist you.]

Armin Straub
straub@southalabama.edu

31

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

