
Sketch of Lecture 11 Fri, 2/3/2023

Example 71. Solve x� 4 (mod 5), x� 10 (mod 13).

Solution. x� 4 �13 �13mod5
¡1

2

+ 10 � 5 � 5mod13
¡1

¡5

� 104¡ 250� 49 (mod65)

Check. Since it is easy to do so, we should quickly check our answer: 49� 4 (mod5), 49� 10 (mod13)

Example 72. Let p; q > 3 be distinct primes.

(a) Show that x2� 9 (mod p) has exactly two solutions (i.e. �3).

(b) Show that x2� 9 (mod pq) has exactly four solutions (�3 and two more solutions �a).

Solution.

(a) If x2 � 9 (mod p), then 0 � x2 ¡ 9 = (x ¡ 3)(x + 3) (mod p). Since p is a prime it follows that
x¡ 3� 0 (mod p) or x+3� 0 (mod p). That is, x��3 (mod p).

(b) By the CRT, we have x2 � 9 (mod pq) if and only if x2 � 9 (mod p) and x2 � 9 (mod q). Hence,
x��3 (mod p) and x��3 (mod q). These combine in four different ways.
For instance, x� 3 (mod p) and x� 3 (mod q) combine to x� 3 (mod pq). However, x� 3 (mod p)
and x�¡3 (mod q) combine to something modulo pq which is different from 3 or ¡3.

Why primes >3? Why did we exclude the primes 2 and 3 in this discussion?
Comment. There is nothing special about 9. The same is true for x2� a2 (mod pq) for each integer a.

Example 73. Determine all solutions to x2� 9 (mod 35).

Solution. By the CRT:

x2� 9 (mod35)
() x2� 9 (mod5) and x2� 9 (mod7)
() x��3 (mod5) and x��3 (mod7)

The two obvious solutions modulo 35 are �3. To get one of the two additional solutions, we solve x�3 (mod5),
x�¡3 (mod7). [Then the other additional solution is the negative of that.]

x� 3 � 7 � 7mod5
¡1

3

¡ 3 � 5 � 5mod7
¡1

3

� 63¡ 45� 18 (mod35)

Hence, the solutions are x��3 (mod35) and x��17 (mod35). [�18��17 (mod35)]

Silicon slave labor. We can let Sage (more next page!) do the work for us:

Sage] solve_mod(x^2 == 9, 35)

[(17); (32); (3); (18)]

Armin Straub
straub@southalabama.edu

24



Sage

Any serious cryptography involves computations that need to be done by a machine. Let us see
how to use the open-source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser.
[For basic computations, you can also simply use the textbox on our course website.]
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 74. Let's start with some basics.

Sage] 17 % 12

5

Sage] (1 + 5) % 2 # don't forget the brackets

0

Sage] inverse_mod(17, 23)

19

Sage] xgcd(17, 23)

(1;¡4; 3)

Sage] -4*17 + 3*23

1

Sage] euler_phi(84)

24

Example 75. Why is the following bad?

Sage] 3^1003 % 101

27

The reason is that this computes 31003 first, and then reduces that huge number modulo 101:
Sage] 3^1003

35695912125981779196042292013307897881066394884308000526952849942124372128361032287601\
01447396641767302556399781555972361067577371671671062036425358196474919874574608035466\
17047063989041820507144085408031748926871104815910218235498276622866724603402112436668\
09387969298949770468720050187071564942882735677962417251222021721836167242754312973216\
80102291029227131545307753863985171834477895265551139587894463150442112884933077598746\
0412516173477464286587885568673774760377090940027

We know how to efficiently avoid computing huge intermediate numbers (binary exponentiation!).
Sage does the same if we instead use something like:

Sage] power_mod(3, 1003, 101)

27

Armin Straub
straub@southalabama.edu

25

sagemath.org
cocalc.com

