
Sketch of Lecture 1 Wed, 1/20/2021

Review: The calculus of congruences

Example 1. Today is Wednesday. What day of the week will it be a year (365 days) from now?
Solution. Since 365� 1 (mod7), it will be Thursday on 1/20/2022.

a� b (modn) means a= b+mn (for some m2Z)

In that case, we say that �a is congruent to b modulo n�.

In other words: a� b (modn) if and only if a¡ b is divisible by n.

Example 2. 17� 5 (mod12) as well as 17� 29�¡7 (mod12)
We say that 5; 17; 29;¡7 all represent the same residue modulo 12.
There are exactly 12 different residues modulo 12.

Example 3. Every integer x is congruent to one of 0; 1; 2; 3; 4; :::; 11 modulo 12.
We therefore say that 0; 1; 2; 3; 4; :::; 11 form a complete set of residues modulo 12.
Another natural complete set of residues modulo 12 is: 0;�1;�2; :::;�5; 6
[¡6 is not included because ¡6� 6 modulo 12.]

Online homework. When entering solutions modulo n for online homework, your answer needs to be from one
of the two natural sets of residues above.

Example 4. Modulo 7, we have the complete sets of residues 0; 1;2; 3; 4; 5;6 and 0;�1;�2;�3.
A less obvious set is 0; 3; 32; 33; 34; 35; 36.
Review. Note that 36�1 (mod7) by Fermat's little theorem. Because 6 is the smallest positive exponent such
that 3k� 1 (mod7), we say that the multiplicative order of 3 (mod7) is 6. This makes 3 (mod7) a primitive
root.
On the other hand, the multiplicative order of 2 (mod7) is 3. (Why?!)

Example 5. 67 � 24� 4 � 3� 5 (mod 7)
The point being that we can (and should!) reduce the factors individually first (to avoid the large number we would
get when actually computing 67 � 24 first). This idea is crucial in the computations we (better, our computers)
will later do for cryptography.

Example 6. (but careful!) If a� b (modn), then ac� bc (modn) for all integers c.
However, the converse is not true! We can have ac� bc (modn) without a� b (modn) (even
assuming that c�/ 0).
For instance. 2 � 4� 2 � 1 (mod6) but 4�/ 1 (mod6)
However. 2 � 4� 2 � 1 (mod6) means 2 � 4=2 � 1+ 6m. Hence, 4=1+3m, or, 4� 1 (mod3).
The issue is that 2 is not invertible modulo 6.

a is invertible modulo n () gcd (a; n)= 1

Similarly, ab� 0 (modn) does not always imply that a� 0 (modn) or b� 0 (modn).
For instance. 4 � 15� 0 (mod6) but 4�/ 0 (mod6) and 15�/ 0 (mod6)
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Good news. These issues do not occur when n is a prime p.
� If ab� 0 (mod p), then a� 0 (mod p) or b� 0 (mod p).

� Suppose c�/ 0 (mod p). If ac� bc (mod p), then a� b (mod p).

Example 7. Determine 4¡1 (mod 13).
Recall. This is asking for the modular inverse of 4 modulo 13. That is, a residue x such that 4x�1 (mod13).
Brute force solution. We can try the values 0; 1; 2; 3; :::; 12 and find that x= 10 is the only solution modulo
13 (because 4 � 10� 1 (mod13)).
This approach may be fine for small examples when working by hand, but is not practical for serious congruences.
On the other hand, the Euclidean algorithm, reviewed below, can compute modular inverses extremely efficiently.
Glancing. In this special case, we can actually see the solution if we notice that 4 � 3 = 12, so that 4 � 3 �
¡1 (mod13) and therefore 4¡1�¡3 (mod13).

Example 8. Solve 4x� 5 (mod 13).
Solution. From the previous problem, we know that 4¡1�¡3 (mod13).
Hence, x� 4¡1 � 5�¡3 � 5=¡2 (mod13).

(Bézout's identity) Let a; b2Z (not both zero). There exist x; y 2Z such that

gcd (a; b)= ax+ by:

The integers x; y can be found using the extended Euclidean algorithm.

In particular, if gcd (a; b)= 1, then a¡1� x (mod b).

Here, Z denotes the set of all integers 0;�1;�2; :::

Example 9. Find d= gcd (17; 23) as well as integers r; s such that d= 17r+ 23s.
Solution. We apply the extended Euclidean algorithm:

gcd (17;23) 23 =1 � 17 +6 or: A 6=1 � 23 ¡ 1 � 17
= gcd(6;17) 17 =3 � 6 ¡ 1 B 1=¡1 � 17 +3 � 6
= 1

Backtracking through this, we find that:

1 = ¡1 � 17 +3 � 6 = ¡4 � 17 +3 � 23
B A

That is, Bézout's identity takes the form 1=¡4 � 17+3 � 23.

Example 10. Determine 17¡1 (mod23).
Solution. By the previous example, 1 =¡4 � 17+ 3 � 23. Reducing modulo 23, we get ¡4 � 17� 1 (mod23).
Hence, 17¡1�¡4 (mod23). [Or, if preferred, 17¡1� 19 (mod23).]
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Sketch of Lecture 2 Fri, 1/22/2021

Example 11. Determine 16¡1 (mod25).
Solution. We apply the extended Euclidean algorithm:

gcd (16; 25) 25 =2 � 16 ¡ 7 or: A 7=¡1 � 25 +2 � 16
= gcd(7; 16) 16 =2 � 7 +2 B 2= 1 � 16 ¡ 2 � 7
= gcd(2; 7) 7 = 3 � 2 + 1 C 1= 7 ¡ 3 � 2
= 1

Backtracking through this, we find that:

1 = 7 ¡ 3 � 2 = 7 � 7 ¡ 3 � 16 = ¡7 � 25 + 11 � 16
C B A

That is, Bézout's identity takes the form ¡7 � 25+ 11 � 16=1.
Reducing modulo 25, we get 11 � 16� 1 (mod25). Hence, 16¡1� 11 (mod25).

Application: credit card numbers

Have you ever thought about the numbers on your credit card? Usually, these are 16 digits. For
instance, 4266 8342 8412 9270.

No worries (or false hopes...). While close, this is not exactly my credit card number.

� The first digit(s) of a credit card identify the issuer of the card. For instance, a leading 4
is typically Visa, 51 to 55 indicate Mastercard, and 34, 37 indicate American Express. The
above credit card is indeed a Visa card.

More information at: https://en.wikipedia.org/wiki/Payment_card_number

� The last digit is a check digit, and a valid credit card number must pass the Luhn check
(patented by IBM scientist Hans Peter Luhn in 1954/60; now in public domain).

This works as follows: every second digit, starting with the first, is doubled. If that results
in a two-digit number, we take the sum of those two digits.24 4 2 6 6 8 3 4 2 8 4 1 2 9 2 7 0

�2 8 12 16 8 16 2 18 14
8 2 3 6 7 3 8 2 7 4 2 2 9 2 5 0

35
The other half of the digits is left unchanged. We then add all these digits and reduce
modulo 10:

8+ 2+3+6+7+3+8+2+7+4+2+2+9+2+5+0� 0 (mod10)

The result of that computation must be 0. Otherwise, the credit card number fails the
Luhn check and is invalid.

Example 12. (extra exercise)

(a) Check that the number 4266 8342 8412 9280 fails the Luhn check.

(b) How do we have to change the last digit to turn this into a valid credit card number?
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The purpose of the Luhn check is to detect accidental errors.

[A random credit card number has a 90% chance of failing the Luhn check. Why?!]

On the other hand, as the previous example shows, it provides basically no protection against
malicious attacks (except against amateur criminals not aware of the Luhn check).

The Luhn check was designed before online banking (patent filed in 1954). So a special focus is
on detecting accidental errors that occur frequently when writing down (things like) credit card
numbers by hand.

� For instance, it is common that a single digit gets messed up. Every such error is detected
by the Luhn check. (Why?!)

� Another common error is to transpose two digits. Every such error (with the exception of
09 versus 90) is detected.

For instance. A 82 at the beginning contributes 7 + 2 = 9 to the check sum, while a 28 contributes
4+8� 2 to the sum. Hence, replacing one with the other will result in the Luhn check failing.
Advanced comment. An alternative checksum formula that can detect all single digit changes as well
as all transpositions is the Verhoeff algorithm (1969). It is, however, much more complicated and cannot
be readily performed by hand.

Example 13. The doubling and sum-of-digits procedure permutes the digits as follows:

original digit 0 1 2 3 4 5 6 7 8 9
adjusted digit 0 2 4 6 8 1 3 5 7 9

difference (mod10) 0 1 2 3 4 6 7 8 9 0

Note. Looking at the differences modulo 10, we can see why the Luhn check is able to detect all transposition
errors (except 09 versus 90).

Example 14. The Luhn check has the somewhat complicated feature that every second digit has
to be doubled. Why do we not just add all the original digits and reduce the sum modulo 10?
Solution. One reason is that this simplified check does not catch the transposition of two digits. Why?!
[On the other hand, that simplified check does also detect if just a single digit is incorrect.]

Example 15. (extra) The International Standard Book Number ISBN-10 consists of nine digits
a1a2:::a9 followed by a tenth check digit a10 (the symbol X is used if the digit equals 10), which
satisfies

a10�
X
k=1

9

kak (mod11):

The ISBN 0-13-186239-? is missing the check digit (printed as �?�). Compute it!

Solution. 1 � 0+2 � 1+ 3 � 3+4 � 1+5 � 8+6 � 6+7 � 2+ 8 � 3+9 � 9= 210� 1 (mod11)
Hence, the full ISBN is 0-13-186239-1.

This is another example of error checking, which is standard practice for all sorts of identification
numbers (such as bank account numbers, VIN). With a little more effort error correction is also
possible.
Comment. The check digit is designed so that it is always possible to detect when a single digit is messed up.
It is also always possible to detect when two digits are transposed.

Armin Straub
straub@southalabama.edu

4



Sketch of Lecture 3 Mon, 1/25/2021

Euler's phi function

Definition 16. Euler's phi function �(n) denotes the number of integers in f1; 2; :::; ng that
are relatively prime to n.
In other words, �(n) counts how many residues are invertible modulo n.

If the prime factorization of n is n= p1
k1���prkr, then �(n)=n

�
1¡ 1

p1

�
���
�
1¡ 1

pr

�
.

Why is this true?

� Why is the formula �obvious� if n= pk is a prime power?

� On the other hand, for composite n, say n= ab, we have: �(ab)= �(a)�(b) if gcd (a; b)= 1

This is a consequence of the Chinese remainder theorem. (Review if necessary! We'll use it later but will
only review it briefly then.)

The above formula follows from combining these two observations. Can you fill in the details?

Example 17. Compute �(35).
Solution. �(35)= �(5 � 7)= �(5)�(7)=4 � 6= 24

Example 18. Compute �(100).
Solution. �(100)= �(22 � 52) = �(22)�(52)= (22¡ 21) � (52¡ 51)= 40

[Alternatively: �(100)= �(22 � 52)= 100
�
1¡ 1

2

��
1¡ 1

5

�
= 40]

Historical examples of symmetric encryption

Alice wants to send a secret message to Bob.
What Alice sends will be transmitted through an unsecure medium (like the internet), meaning that others can
read it. However, it is important to Alice and Bob that noone else can understand it.

The original message is referred to as the plaintext m. What Alice actually sends is called the
ciphertext c (the encrypted message).
Symmetric encryption algorithms rely on a secret key k (from some key space) shared by Alice
and Bob (but unknown to anyone else).

¡!m
Alice

E: Encrypt
secret key: k

¡!Ek(m)=c c is sent ¡!c
Bob

D: Decrypt
secret key: k

¡!Dk(c)=m

Our ultimate goal will be to secure messaging against both:

� eavesdropping (goal: confidentiality)

� tampering (goal: integrity and, even stronger, authenticity)
The symmetric encryption approach, by itself, cannot fully protect against tampering. For instance, an
attacker can collect previously sent messages, resend them, or use them to replace new messages. (You
could preface each message with something like a time stamp to address these issues. But that's getting
ahead of ourselves; and there are better ways.)

Armin Straub
straub@southalabama.edu

5



Shift cipher

The alphabet for our messages will be A;B; :::; Z, which we will identify with 0; 1; :::; 25.
So, for instance, C is identified with the number 2.

Example 19. (shift cipher) A key is an integer k 2 f0; 1; :::; 25g. Encryption works character
by character using

Ek: x 7!x+ k (mod 26):

Obviously, the decryption Dk works as x 7!x¡ k (mod26).
The key space is f0; 1; :::; 25g. It has size 26. [Well, k=0 is a terrible key. Maybe we should exclude it.]

For instance. If k=1, then the message HELLO is encrypted as IFMMP .
If k=2, then the message HELLO is encrypted as JGNNQ.

Historic comment. Caesar encrypted some private messages with a shift cipher (typically using k = 3). The
shift cipher is therefore also often called Caesar's cipher.
While completely insecure today, it was fairly secure at the time (with many of his enemies being illiterate).
Modern comment. Many message boards on the internet �encrypt� things like spoilers or solutions using a shift
cipher with k= 13. This is called ROT13. What's special about the choice k= 13?
Solution. Since ¡13� 13 (mod26), for ROT13, encryption and decryption are the same!

Example 20. (affine cipher) A slight upgrade to the shift cipher, we encrypt each character as

E(a;b): x 7! ax+ b (mod26):

How does the decryption work? How large is the key space?
Solution. Each character x is decrypted via x 7! a¡1(x¡ b) (mod26).
The key is k= (a; b). Since a has to be invertible modulo 26, there are �(26) = �(2) � �(13) = 12 possibilities
for a. There are 26 possibilities for b. Hence, the key space has size 12 � 26= 312.

Vigenere cipher (vector shift cipher)

See Section 2.3 of our book for a full description of the Vigenere cipher.
This cipher was long believed by many (until early 20th) to be secure against ciphertext only attacks (more on
the classification of attacks shortly).

Example 21. Let us encrypt HOLIDAY using a Vigenere cipher with key BAD (i.e. 1; 0; 3).

H O L I D A Y
+ B A D B A D B
= I O O J D D Z

Hence, the ciphertext is IOOJDDZ.

An encrypted message

Example 22. (bonus challenge!) You find a post-it with the following message:

TERRGVATF FGENATRE

Can you make any sense of it?
(To collect a bonus point, send me an email before next week with the plaintext and how you found it.)
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