Example 210. (Riemann hypothesis) The Riemann zeta function $\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$ converges (for real s) if and only if s > 1.

The divergent series $\zeta(1)$ is the harmonic series, and $\zeta(p)$ is often called a *p*-series in Calculus II.

Comment. Euler achieved worldwide fame in 1734 by discovering and proving that $\zeta(2) = \frac{\pi^2}{6}$ (and similar formulas for $\zeta(4), \zeta(6), ...$).

For complex values of $s \neq 1$, there is a unique way to "analytically continue" this function. It is then "easy" to see that $\zeta(-2) = 0$, $\zeta(-4) = 0$, The **Riemann hypothesis** claims that all other zeroes of $\zeta(s)$ lie on the line $s = \frac{1}{2} + a\sqrt{-1}$ ($a \in \mathbb{R}$). A proof of this conjecture (checked for the first 10,000,000,000 zeroes) is worth \$1,000,000.

http://www.claymath.org/millennium-problems/riemann-hypothesis

The connection to primes. Here's a vague indication that $\zeta(s)$ is intimately connected to prime numbers:

$$\begin{split} \zeta(s) &= \left(1 + \frac{1}{2^s} + \frac{1}{2^{2s}} + \dots\right) \left(1 + \frac{1}{3^s} + \frac{1}{3^{2s}} + \dots\right) \left(1 + \frac{1}{5^s} + \frac{1}{5^{2s}} + \dots\right) \cdots \\ &= \frac{1}{1 - 2^{-s}} \frac{1}{1 - 3^{-s}} \frac{1}{1 - 5^{-s}} \cdots \\ &= \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} \end{split}$$

This infinite product is called the Euler product for the zeta function. If the Riemann hypothesis was true, then we would be better able to estimate the number $\pi(x)$ of primes $p \leq x$.

More generally, certain statements about the zeta function can be translated to statements about primes. For instance, the (non-obvious!) fact that $\zeta(s)$ has no zeros for $\operatorname{Re} s = 1$ implies the prime number theorem. http://www-users.math.umn.edu/~garrett/m/v/pnt.pdf

[... brief intro to elliptic curves: more next time! ...]