
Sketch of Lecture 25 Mon, 3/11/2019

Review. x (modn) is a primitive root.
() The (multiplicative) order of x (modn) is �(n). (That is, the order is as large as possible.)

() x; x2; :::; x�(n) is a list of all invertible residues modulo n.

Lemma 140. If ar� 1 (modn) and as� 1 (modn), then agcd(r;s)� 1 (modn).
Proof. By Bezout's identity, there are integers x; y such that xr+ ys= gcd(r; s).

Hence, agcd(r;s)= axr+ys= axrays=(ar)x(as)y� 1 (modn). �

Corollary 141. The multiplicative order of a modulo n divides �(n).
Proof. Let k be the multiplicative order, so that ak � 1 (mod n). By Euler's theorem a�(n)� 1 (mod n).
The previous lemma shows that agcd(k;�(n))� 1 (modn). But since the multiplicative order is the smallest
exponent, it must be the case that gcd(k; �(n))= k. Equivalently, k divides �(n). �

Comment. By the same argument, if am� 1 (modn), then the order of a (modn) divides m.

Example 142. Compute the multiplicative order of 2 modulo 7; 11; 9; 15. In each case, is 2 a
primitive root?
Solution.

� 2 (mod7): 22� 4; 23� 1. Hence, the order of 2 modulo 7 is 3.
Since the order is less than �(7)=6, 2 is not a primitive root modulo 7.

� 2 (mod11): Since �(11) = 10, the only possible orders are 2; 5; 10. Hence, checking that 22�/ 1 and
25�/ 1 is enough to conclude that the order must be 10.
Since the order is equal to �(11)= 10, 2 is a primitive root modulo 11.
Brute force approach (too much unnecessary work). Just for comparison, 20= 1; 21= 2; 22= 4;
23=8; 24� 5; 25� 2 � 5= 10; 26� 2 � 10� 9; 27� 2 � 9� 7; 28� 2 � 7� 3; 29� 2 � 3= 6; 210� 2 � 6� 1.
Thus, the order of 2 mod 11 is 10.

� 2 (mod9): Since �(9)=6, the only possible orders are 2; 3; 6. Hence, checking that 22�/ 1 and 23�/ 1
is enough to conclude that the order must be 6. (Indeed, 22� 4, 23� 8, 24� 7, 25� 5, 26� 1.)
Since the order is equal to �(9)= 6, 2 is a primitive root modulo 9.

� The order of 2 (mod15) is 4 (a divisor of �(15)= 8).
2 is not a primitive root modulo 15. In fact, there is no primitive root modulo 15.

Comment. It is an open conjecture to show that 2 is a primitive root modulo in�nitely many primes. (This
is a special case of Artin's conjecture which predicts much more.)
Advanced comment. There exists a primitive root modulo n if and only if n is of one of 1; 2; 4; pk; 2pk for
some odd prime p.

Example 143. Show that x4�1 (mod15) for all invertible residues x (mod15). In particular,
there are no primitive roots modulo 15.
Solution. By the Chinese Remainder Theorem:

x4� 1 (mod15)
() x4� 1 (mod3) and x4� 1 (mod5)

The congruences modulo 3 and 5 follow immediately from Fermat's little theorem.

Comment. The same argument shows that there are no primitive roots modulo pq, where p and q are distinct
odd primes (because each element has order dividing �(pq)/2).
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Lemma 144. Suppose x (modn) has (multiplicative) order k.

(a) xa� 1 (modn) if and only if k ja.

(b) xa has order k

gcd(k; a) .

Proof.

(a) �=)�: By Lemma 140, xk�1 and xa�1 imply xgcd(k;a)�1 (modn). Since k is the smallest exponent,
we have k= gcd(k; a) or, equivalently, kja.
�(=�: Obviously, if k ja so that a= kb, then xa=(xk)b� 1 (modn).

(b) By the �rst part, (xa)m� 1 (modn) if and only if k jam. The smallest such m is m=
k

gcd(k; a) . �

Example 145. Determine the orders of each (invertible) residue modulo 7. In particular,
determine all primitive roots modulo 7.
Solution. First, observe that, since �(7)= 6, the orders can only be 1; 2; 3; 6. Indeed:

residues 1 2 3 4 5 6
order 1 3 6 3 6 2

The primitive roots are 3 and 5.

Example 146. Redo Example 145, starting with the knowledge that 3 is a primitive root.
Solution.

residues 1 2 3 4 5 6

3a 30 32 31 34 35 33

order= 6
gcd(a; 6)
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RSA and public key cryptography
� So far, our symmetric ciphers required a single private key k, a secret shared between

the communicating parties.
That leaves the di�cult task of how to establish such private keys over a medium like the internet.

� In public key cryptosystems, there are two keys ke, kd, one for encryption and one
for decryption. Bob keeps kd secret (from anyone else!) and shares ke with the world.
Alice (or anyone else) can then send an encrypted message to Bob using ke. However,
Bob is the only who can decrypt it using kd.
It is crucial that the key kd cannot be (easily) constructed from ke.

RSA is one the �rst public key cryptosystems.
� It was described by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. (Note the initials!)

� However, a similar system had already been developed in 1973 by Cli�ord Cocks for the UK intelligence
agency GCHQ (classi�ed until 1997). Even earlier, in 1970, his colleague James Ellis was likely the
�rst to discover public key cryptography.

Example 147. Let us emphasize that it should be surprising that something like public key
cryptography is even possible.
Imagine Alice, Bob and Eve sitting at a table. Everything that is being said is heard by all three of them.
The three have never met before and share no secrets. Should it be possible in these circumstances that Alice
and Bob can share information without Eve also learning about it?
Public key cryptography makes exactly that possible!
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