Frequently, security's weakest link are humans. It's very hard to protect against that.
https://en.wikipedia.org/wiki/Social_engineering_(security)
Theorem 69. (Chinese Remainder Theorem) Let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers with $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then the system of congruences

$$
x \equiv a_{1}\left(\bmod n_{1}\right), \quad \ldots, \quad x \equiv a_{r}\left(\bmod n_{r}\right)
$$

has a simultaneous solution, which is unique modulo $n=n_{1} \cdots n_{r}$.
In other words. The Chinese remainder theorem provides a bijective (i.e., 1-1 and onto) correspondence

$$
x(\bmod n m) \mapsto\left[\begin{array}{c}
x(\bmod n) \\
x(\bmod m)
\end{array}\right] .
$$

For instance. Let's make the correspondence explicit for $n=2, m=3$:
$0 \mapsto\left[\begin{array}{l}0 \\ 0\end{array}\right], 1 \mapsto\left[\begin{array}{l}1 \\ 1\end{array}\right], 2 \mapsto\left[\begin{array}{l}0 \\ 2\end{array}\right], 3 \mapsto\left[\begin{array}{l}1 \\ 0\end{array}\right], 4 \mapsto\left[\begin{array}{l}0 \\ 1\end{array}\right], 5 \mapsto\left[\begin{array}{l}1 \\ 2\end{array}\right]$
Example 70. Let $p, q>3$ be distinct primes.
(a) Show that $x^{2} \equiv 9(\bmod p)$ has exactly two solutions (i.e. $\left.\pm 3\right)$.
(b) Show that $x^{2} \equiv 9(\bmod p q)$ has exactly four solutions (± 3 and two more solutions $\pm a$).

Solution.
(a) If $x^{2} \equiv 9(\bmod p)$, then $0 \equiv x^{2}-9=(x-3)(x+3)(\bmod p)$. Since p is a prime it follows that $x-3 \equiv 0(\bmod p)$ or $x+3 \equiv 0(\bmod p)$. That is, $x \equiv \pm 3(\bmod p)$.
(b) By the CRT, we have $x^{2} \equiv 9(\bmod p q)$ if and only if $x^{2} \equiv 9(\bmod p)$ and $x^{2} \equiv 9(\bmod q)$. Hence, $x \equiv \pm 3(\bmod p)$ and $x \equiv \pm 3(\bmod q)$. These combine in four different ways.
For instance, $x \equiv 3(\bmod p)$ and $x \equiv 3(\bmod q)$ combine to $x \equiv 3(\bmod p q)$. However, $x \equiv 3(\bmod p)$ and $x \equiv-3(\bmod q)$ combine to something modulo $p q$ which is different from 3 or -3 .

Why primes >3 ? Why did we exclude the primes 2 and 3 in this discussion?
Comment. There is nothing special about 9 . The same is true for $x^{2} \equiv a^{2}(\bmod p q)$ for any integer a.
Example 71. Determine all solutions to $x^{2} \equiv 9(\bmod 35)$.
Solution. By the CRT:

$$
\begin{aligned}
& x^{2} \equiv 9(\bmod 35) \\
\Longleftrightarrow & x^{2} \equiv 9(\bmod 5) \text { and } x^{2} \equiv 9(\bmod 7) \\
\Longleftrightarrow & x \equiv \pm 3(\bmod 5) \text { and } x \equiv \pm 3(\bmod 7)
\end{aligned}
$$

The two obvious solutions modulo 35 are ± 3. To get one of the two additional solutions, we solve $x \equiv$ $3(\bmod 5), x \equiv-3(\bmod 7)$. [Then the other additional solution is the negative of that.]
$x \equiv 3 \cdot 7 \cdot \underbrace{7_{\bmod 5}^{-1}}_{3}-3 \cdot 5 \cdot \underbrace{5-1}_{3} 7 \mathrm{mod} 733-45 \equiv 18(\bmod 35)$
Hence, the solutions are $x \equiv \pm 3(\bmod 35)$ and $x \equiv \pm 17(\bmod 35)$.

$$
[\pm 18 \equiv \pm 17(\bmod 35)]
$$

Silicon slave labor. We can let Sage do the work for us:

```
Sage] solve_mod(x^2 == 9, 35)
```

[(17), (32), (3), (18)]

