Sketch of Lecture 11

Frequently, security's weakest link are humans. It's very hard to protect against that. https://en.wikipedia.org/wiki/Social_engineering_(security)

Theorem 69. (Chinese Remainder Theorem) Let $n_1, n_2, ..., n_r$ be positive integers with $gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of congruences

 $x \equiv a_1 \pmod{n_1}, \quad \dots, \quad x \equiv a_r \pmod{n_r}$

has a simultaneous solution, which is unique modulo $n = n_1 \cdots n_r$.

In other words. The Chinese remainder theorem provides a bijective (i.e., 1-1 and onto) correspondence

$$x \; (\operatorname{mod} n m) \mapsto \left[\begin{array}{c} x \; (\operatorname{mod} n) \\ x \; (\operatorname{mod} m) \end{array} \right].$$

For instance. Let's make the correspondence explicit for n = 2, m = 3: $0 \mapsto \begin{bmatrix} 0\\0 \end{bmatrix}$, $1 \mapsto \begin{bmatrix} 1\\1 \end{bmatrix}$, $2 \mapsto \begin{bmatrix} 0\\2 \end{bmatrix}$, $3 \mapsto \begin{bmatrix} 1\\0 \end{bmatrix}$, $4 \mapsto \begin{bmatrix} 0\\1 \end{bmatrix}$, $5 \mapsto \begin{bmatrix} 1\\2 \end{bmatrix}$

Example 70. Let p, q > 3 be distinct primes.

- (a) Show that $x^2 \equiv 9 \pmod{p}$ has exactly two solutions (i.e. ± 3).
- (b) Show that $x^2 \equiv 9 \pmod{pq}$ has exactly four solutions $(\pm 3 \text{ and two more solutions } \pm a)$.

Solution.

- (a) If $x^2 \equiv 9 \pmod{p}$, then $0 \equiv x^2 9 = (x 3)(x + 3) \pmod{p}$. Since p is a prime it follows that $x 3 \equiv 0 \pmod{p}$ or $x + 3 \equiv 0 \pmod{p}$. That is, $x \equiv \pm 3 \pmod{p}$.
- (b) By the CRT, we have x² ≡ 9 (mod pq) if and only if x² ≡ 9 (mod p) and x² ≡ 9 (mod q). Hence, x ≡ ±3 (mod p) and x ≡ ±3 (mod q). These combine in four different ways.
 For instance, x ≡ 3 (mod p) and x ≡ 3 (mod q) combine to x ≡ 3 (mod pq). However, x ≡ 3 (mod p) and x ≡ -3 (mod q) combine to something modulo pq which is different from 3 or -3.

Why primes >3? Why did we exclude the primes 2 and 3 in this discussion? Comment. There is nothing special about 9. The same is true for $x^2 \equiv a^2 \pmod{pq}$ for any integer a.

Example 71. Determine all solutions to $x^2 \equiv 9 \pmod{35}$.

Solution. By the CRT:

 $x^{2} \equiv 9 \pmod{35}$ $\iff x^{2} \equiv 9 \pmod{5} \text{ and } x^{2} \equiv 9 \pmod{7}$ $\iff x \equiv \pm 3 \pmod{5} \text{ and } x \equiv \pm 3 \pmod{7}$

The two obvious solutions modulo 35 are ± 3 . To get one of the two additional solutions, we solve $x \equiv 3 \pmod{5}$, $x \equiv -3 \pmod{7}$. [Then the other additional solution is the negative of that.]

$$x \equiv 3 \cdot 7 \cdot 7_{\underline{\text{mod 5}}}^{-1} - 3 \cdot 5 \cdot 5_{\underline{\text{mod 7}}}^{-1} \equiv 63 - 45 \equiv 18 \pmod{35}$$

Hence, the solutions are $x \equiv \pm 3 \pmod{35}$ and $x \equiv \pm 17 \pmod{35}$. $[\pm 18 \equiv \pm 17 \pmod{35}]$

Silicon slave labor. We can let Sage do the work for us:

Sage] solve_mod($x^2 == 9, 35$)

[(17), (32), (3), (18)]

Armin Straub straub@southalabama.edu