
Sketch of Lecture 10 Wed, 1/30/2019

Example 64. In each case, determine if the stream could have been produced by the LFSR
xn+5�xn+2+ xn (mod 2). If yes, predict the next three terms.

(STREAM-1) :::; 1; 0; 0; 1; 1; 1; 1; 0; 1; ::: (STREAM-2) :::; 1; 1; 0; 0; 0; 1; 1; 0; 1; :::

Solution. Using the LFSR, the values 1; 0; 0; 1; 1 are followed by 1; 1; 1; 0; ::: Hence, STREAM-1 was not
produced by this LFSR.
On the other hand, using the LFSR, the values 1; 1; 0; 0; 0 are followed by 1; 1; 0; 1; 1; 1; 0; ::: Hence, it is
possible that STREAM-2 was produced by the LFSR (for a random stream, the chance is only 1/24=6.25%
that 4 bits matched up). We predict that the next values are 1; 1; 0; :::
Comment. This observation is crucial for the attack on CSS described in Example 65.

Example 65. (CSS) The CSS (content scramble system) is based on 2 LFSRs and used for
the encryption of DVDs. Let us indicate (in a slightly oversimpli�ed way) how to break it.

CSS was introduced in 1996 and �rst compromised in 1999. One big issue is that its key size is 40 bits. Since
240� 1.1 � 1012 is small by modern standards, even a direct brute-force attack in time 240 is possible.
However, we will see below that poor design makes it possible to attack it in time 216.
Historic comment. 40 bits was the maximum allowed by US export limitations at the time.
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
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CSS PRG combines one 17-bit LFSR and one 25-bit LFSR. The bits output by the CSS PRG are the sum
of the bits output by the two LFSRs (this is the usual sum, including carries).
The 40 bit key is used to seed the LFSRs (the 4th bit of each seed is �1�, so we need 16+24=40 other bits).
Here's how we break CSS in time 216:

� If a movie is encrypted using MPEG then we know the �rst few, say x (6-20), bytes of the plaintext.

� As in Example 54, this allows us to compute the �rst x bytes of the CSS keystream.

� We now go through all 216 possibilities for the seed of LFSR-17. For each seed:

� We generate x bytes using LFSR-17 and subtract these from the known CSS keystream.

� This would be the output of LFSR-25. As in Example 64, we can actually easily tell if such an
output could have been produced by LFSR-25. If yes, then we found (most likely) the correct
seed of LFSR-17 and now also have the correct state of LFSR-25.

This kind of attack is known as a correlation attack.
https://en.wikipedia.org/wiki/Correlation_attack

Comment. Similar combinations of LFSRs are used in GSM encryption (A5/1,2, 3 LFSRs); Bluetooth (E0,
4 LFSRs). All of these are broken; so, of course, they shouldn't be used. However, it is di�cult to update
things implemented in hardware:::
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A sad but important lesson

CSS (and many other examples in recent history) teach us one important lesson:

Do not implement your own ideas for serious crypto!

We will soon see that there exist cryptosystems which are believed to be secure. While none
of these beliefs are proven, we do know that certain of these are in fact secure (if implemented
correctly) if and only if a certain important mathematical problem cannot be easily solved.

� So, to crack such a system, one has to solve a mathematical problem that many people care about
deeply. If this happens, you will most likely read about it in the (academic) news, and you will have
an opportunity to update your system in time (most likely, you'll hear about progress much earlier).

� On the other hand, if you use a cryptosystem that is not well-studied, then it may well happen that an
adversary breaks your system and keeps exploiting the security leak without you ever learning about it.

Review: Chinese remainder theorem

Example 66. (warmup)

(a) If x� 3 (mod10), what can we say about x (mod 5)?

(b) If x� 3 (mod 7), what can we say about x (mod 5)?

Solution.

(a) If x� 3 (mod10), then x� 3 (mod5).
[Why?! Because x�3 (mod10) if and only if x=3+10m, which modulo 5 reduces to x�3 (mod5).]

(b) Absolutely nothing! x=3+7m can be anything modulo 5 (because 7� 2 is invertible modulo 5).

Example 67. If x� 32 (mod35), then x� 2 (mod 5), x� 4 (mod 7).
Why?! As in the �rst part of the warmup, if x� 32 (mod35), then x� 32 (mod5) and x� 32 (mod7).

The Chinese remainder theorem says that this can be reversed! (More next class!)

That is, if x� 2 (mod5) and x� 4 (mod7), then the value of x modulo 5 � 7= 35 is determined.
[How to �nd the exact x� 32 (mod35) is discussed in the next example.]

Example 68. Solve x� 2 (mod 5), x� 4 (mod 7).
Solution. x� 2 � 7 � 7mod 5

¡1

3

+4 � 5 � 5mod 7
¡1

3

� 42+ 60� 32 (mod35)

Important comment. Can you see how we need 5 and 7 to be coprime here?
Brute force solution. Note that, while in principle we can always perform a brute force search, this is not
practical for larger problems. Here, if x is a solution, then so is x+35. So we only look for solutions modulo 35.
Since x� 4 (mod7), the only candidates for solutions are 4; 11; 18; ::: Among these, we �nd x= 32.
[We can also focus on x� 2 (mod5) and consider the candidates 2; 7; 12; :::, but that is even more work.]
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