
Sketch of Lecture 9 Mon, 1/28/2019

Example 61. Eve intercepts the ciphertext c = (1111 1011 0000)2 from Alice to Bob. She
knows that the plaintext begins withm=(1100 0:::)2. Eve thinks a stream cipher using a LFSR
with xn+3�xn+2+xn (mod 2) was used. If that's the case, what is the plaintext?

Solution. The initial piece of the keystream is PRG=m� c=(1100 0:::)2� (1111 1:::)2= (0011 1:::)2.
Each xn is a single bit, and we have x1 � 0, x2 � 0, x3 � 1. The given LFSR produces x4 � x3 + x1 � 1,
x5�x4+x2� 1, x6� 0, x7� 1, and so on. Continuing, we obtain PRG= x1x2:::= (0011 1010 0111)2.
Hence, the plaintext would bem=c�PRG=(1111 1011 0000)2� (0011 1010 0111)2=(1100 0001 0111)2.

A PRG is predictable if, given the stream it outputs (but not the seed), one can with some
precision predict what the next bit will be (i.e. do better than just guessing the next bit).

In other words: the bits generated by the PRG must be indistinguishable from truly random bits, even in the
eyes of someone who knows everything about the PRG except the seed.

The PRGs we discussed so far are entirely predictable because the state of the PRGs is part of
the random stream they output.

For instance, for a given LFSR, it is enough to know any ` consecutive outputs xn; xn+1; :::; xn+`¡1 in order
to predict all future output.

Example 62. (bonus!) The LFSR xn+31� xn+28+ xn (mod 2) from Example 59, which is
used in glibc, is entirely predictable because observing x1; x2; :::; x31 we know what x32; x33; :::
are going to be. Alice tries to reduce this predictability by using only x3; x6; x9; ::: as the output
of the LFSR. Demonstrate that this PRG is still perfectly predictable by showing the following:

Challenge. Find a simple LFSR which produces x3; x6; x9; :::

Send me the LFSR, and an explanation how you found it, by Feb 10 for a bonus point!

Comment. There is nothing special about this LFSR. Moreover, a generalization of this argument shows
that only outputting every Nth bit of an LFSR is always going to result in an entirely predictable PRG.

A popular way to reduce predictability is to combine several LFSRs:

Example 63. Let us consider a baby version of CSS (discussed next class). Our PRG uses the
LFSR xn+3�xn+1+xn (mod2) as well as the LFSR xn+4�xn+2+xn (mod2). The output
of the PRG is the output of these two LFSRs added with carry.

Adding with carry just means that we are adding bits modulo 2 but add an extra 1 to the next bits if the
sum exceeded 1. This is the same as interpreting the output of each LFSR as the binary representation of a
(huge) number, then adding these two numbers, and outputting the binary representation of the sum.

If we use (0; 0; 1) as the seed for LFSR-1, and (0; 1; 0; 1) for LFSR-2, what are the �rst 10 bits
output by our PRG?

Armin Straub
straub@southalabama.edu

20



Solution. With seed 0; 0; 1 LSFR-1 produces 0; 1; 1; 1; 0; 0; 1; 0; 1; 1; :::
With seed 0; 1; 0; 1 LSFR-2 produces 0; 0; 0; 1; 0; 1; 0; 0; 0; 1; :::
We now add these two:

0 1 1 1 0 0 1 0 1 1 ���
+ 0 0 0 1 0 1 0 0 0 1 ���
carry 1 1

0 1 1 0 1 1 1 0 1 0 ���

Hence, the output of our PRG is 0; 1; 1; 0; 1; 1; 1; 0; 1; 0; :::.

Important comment. Make sure you realize in which way this CSS PRG is much less predictable than a single
LFSR! A single LFSR with ` registers is completely predictable since knowing ` bits of output (determines
the state of the LFSR and) allows us to predict all future output. On the other hand, it is not so simple to
deduce the state of the CSS PRG from the output. For instance, the initial (0;1; :::) output could have been
generated as (0; 0; :::)+ (0; 1; :::) or (0; 1; :::)+ (0; 0; :::) or (1; 0; :::) + (1; 0; :::) or (1; 1; :::)+ (1; 1; :::).
[In this case, we actually don't learn anything about the registers of each individual LFSR. However, we do
learn how their values have to match up. That's the correlation that is exploited in correlation attacks, like
the one described next class for the actual CSS scheme.]

Advanced comment. Is the carry important? Yes! Let a1; a2; ::: and b1; b2; ::: be the outputs of LFSR-1
and LFSR-2. Suppose we sum without carry. Then the output is a1+ b1; a2+ b2; ::: (with addition mod 2).
If Eve assigns variables k1; k2; :::; k7 to the 3+4 seed bits (the key in the stream cipher), then the output of
the combined LFSR will be linear in these seven variables (because the ai and bi are linear combinations of
the ki). Given just a few more than 7 output bits, a little bit of linear algebra (mod 2) is therefore enough
to solve for k1; k2; :::; k7.
On the other hand, suppose we include the carry. Then the output is a1+ b1; a2+ b2+ a1b1; ::: (note how
a1b1 is 1 (mod2) precisely if both a1 and b1 are 1 (mod2), which is when we have a carry). This is not linear
in the ai and bi (and, hence, not linear in the ki), and we cannot solve for k1; k2; :::; k7 as before.

Armin Straub
straub@southalabama.edu

21


