
Sketch of Lecture 7 Wed, 1/23/2019

Example 48. (bonus!) p= 29137 is an example of a left-truncatable prime: the number itself
as well as all truncations 9137, 137, 37, 7 are prime. By simply exhausting all possibilities (start
with a single digit and keep adding (nonzero) digits on the left until no choice results in a prime),
we �nd that there is a largest left-truncatable prime, namely, 357686312646216567629137.

https://www.youtube.com/watch?v=azL5ehbw_24

Challenge. Find the largest left-truncatable prime which does not have 9 as a digit.

Send me the prime, and an explanation how you found it, by Feb 3 for a bonus point!

Comment. You can play the same game in bases di�erent from 10. We expect that (based on the prime
number theorem), for any base, there is always just going to be a �nite number of truncatable primes (an
extra bonus if you can point me to a proof of that claim!), though the number tends to increase with larger
bases. The largest truncatable prime for base 30, for instance, is not known (it is estimated to have about
82 digits in base 30).
https://oeis.org/A103463

Example 49. One thing that makes the one-time pad di�cult to use is that the key needs to
be the same length as the plaintext. What if we have a shorter key and just repeat it until it
has the length we need?

That's essentially the Vigenere cipher (in a di�erent alphabet).

Solution. Assuming the attacker knows the length of our key (if she doesn't she can just try all possibilities),
this is equivalent to using the one-time pad several times with the same key. That should never be done!
Even using a key twice means that we become susceptible to a ciphertext only attack (see Example 46).

So, repeating the key is a terrible idea. However, the idea to create a longer (random) key out
of a shorter (random) key is not (these are pseudorandom generators, to be discussed next).

Let us emphasize that, in order to be perfectly con�dential, the key for a one-time pad must be
chosen completely at random (otherwise, an attacker can make assumptions on the used keys).

Indeed, the need to generate random numbers shows in every modern cipher.

Stream ciphers

Once we have a way to generate pseudorandom numbers, we can use the idea of the one-
time pad to create a stream cipher.
Start with key of moderate size (say, 128 bits).
Use the key k and a PRG (pseudorandom generator) to generate a much longer pseudorandom keystream
PRG(k). Then encrypt Ek(m)=m�PRG(k).
We lost perfect con�dentiality. Security relies on choice of PRG (must be unpredictable).

As with the one-time pad, we must never reuse the same keystream! That does not mean that
we cannot reuse the key: we can do that using a nonce: Ek(m)=m�PRG((nonce; k)), where
the seed is produced by combining the nonce and k (for instance, just concatenating them).

The nonce is then passed (unencrypted) along with the message.
To make sure that we never reuse the same keystream, we must never use the same nonce with the same key.

Armin Straub
straub@southalabama.edu

14



How to generate random numbers?

Natural randomness is surprisingly di�cult to harness.
You can for instance play around with a Geiger counter but our department is short on these and getting lots
of random numbers is again challenging.

Linear congruential generators

(linear congruential generator) Let a; b;m be chosen parameters.

From the seed x0, we produce the sequence xn+1� axn+ b (modm).

The choice of a; b;m is crucial for this to generate acceptable pseudorandom numbers.
For instance, glibc uses a= 1103515245, b= 12345, m=231. (This is one of two implementations.) In that
case, each xi is represented by precisely 31 bits. [Note that the choice of m makes this very fast.]
https://en.wikipedia.org/wiki/Linear_congruential_generator

Linear congruential generators (LCG) are easy to predict and must not be used for cryptographic purposes.
More generally, all polynomial generators are cryptographically insecure. They are still used in practice,
because they are fast and easy to implement and have decent statistical properties. (For instance, our online
homework is generated using random numbers, and there is no need for crypto-level security there.)
Statistical trouble. Can you see why the sequences produced by the glibc LCG alternate between even and
odd numbers? (Similarly, other low bits are much less �random� than the higher bits.) Because of this defect,
some programs (and other implementations of rand() based on LCGs) throw away the low bits entirely.

Example 50. Generate values using the linear congruential generator xn+1�5xn+3 (mod8),
starting with the seed x0=6.
Solution. x1� 1, x2� 0, x3� 3, x4� 2, x5� 5, x6� 4, x7� 7, x8� 6. This is the value x0 again, so the
sequence will now repeat. Note that we went through all 8 residues before repeating. Period 8.
Note. Because 8=23 we can represent each xi using exactly 3 bits. Then x1;x2;x3; :::=1;0;3; ::: corresponds
to the bit stream (001 000 011 :::)2.

Example 51. (extra) Observe that the sequence produced by the linear congruential generator
xn+1� axn+ b (modm) must repeat, at the latest, after m terms. (Why?!)

One can give precise conditions on a; b;m to achieve a full period m. Namely, this happens if
and only if gcd(b;m)= 1 and a¡ 1 is divisible by all primes (as well as 4) dividing m.

(a) Generate values using a linear congruential generator xn+1�2xn+1 (mod10), starting with the seed
x0=5. When do they repeat? Is that consistent with the mentioned condition?

(b) What are possible values for a so that the LCG xn+1� axn+ 11 (mod100) has period 100?

(c) glibc uses a= 1103515245, b= 12345, m=231. After how many terms will the sequence repeat?

Solution.

(a) x1� 1, x2� 3, x3� 7, x4� 5. This is the value x0 again, so the sequence will repeat. Period 4.
[The period is less than 10. This is as predicted by the mentioned condition, because a ¡ 1 is not
divisible by 2 and 5.]

(b) We need that a¡ 1 is divisible by 4 and 5. Equivalently, a� 1 (mod20). Hence, possible values are
a=1;21; 41; 61; 81.

(c) Clearly, gcd(b;m)= 1. Also, a¡ 1 is divisible by 4 (and no primes other than 2 divide m). Hence, for
every seed, values repeat only after going through all 231 residues.

Armin Straub
straub@southalabama.edu

15



Example 52. Let's use the PRG xn+1 � 5xn + 3 (mod 8) as a stream cipher with the key
k=4=(100)2. The key is used as the seed x0 and the keystream is PRG(k)=x1x2 ::: (where
each xi is 3 bits). Encrypt the message m=(101 111 001)2.
Solution. We �rst use the PRG with seed x0 = k to produce the keystream PRG(k) = 7; 6; 1; ::: =
(111 110 001 :::)2.
We then encrypt and get c=Ek(m) =m�PRG(k)= (101 111 001)2� (111 110 001)2=(010 001 000)2.
Decryption. Observe that decryption works in the exact same way:
Dk(c)= c�PRG(k)= (010 001 000)2� (111 110 001)2=(101 111 001)2.
Note. The keystream continues as PRG(k) = 7; 6; 1; 0; 3; 2; 5; 4; ::: At this point it repeats itself because
we obtained the value 4, which was our seed. Since the state of this PRG only depends on the value of xn,
and there is 8 possible values for xn, the period 8 is the longest possible. The previous (extra) example gave
conditions on the PRG that guarantee that the period is as long as possible.

Example 53. Can you think of a way in which the numbers produced by a linear congruential
generator di�er from truly random ones?
Solution. An easy observation for our small examples is the following: by construction, xn+1 � axn +
b (modm), individual values don't repeat unless a full period is reached and everything repeats. Truly random
numbers do repeat every now and then (however, if m is large, then this observation is not exactly practical).
Of course, knowing the parameters a; b; m, the numbers generated by the PRG are terribly predictable.
Knowing just one number, we can produce all the next ones (as well as the ones before). A PRG that is safe
for cryptographic purposes should not be predictable like that! (See next example.)

The next example illustrates the vulnerability of stream ciphers, based on predictable PRGs.
Recall that it is common to know or guess pieces of plaintexts; for instance every PDF begins with %PDF.

Example 54. Eve intercepts the ciphertext c = (111 111 111)2. It is known that a stream
cipher with PRG xn+1� 5xn+ 3 (mod 8) was used for encryption. Eve also knows that the
plaintext begins with m=(110 1:::)2. Help her crack the ciphertext!

Solution. Since c = m � PRG, we learn that the initial piece of the keystream is PRG = m � c =
(110 1:::)2� (111 1:::)2= (001 0:::)2. Since each xn is 3 bits, we conclude that x1=(001)2=1.
Because the PRG is predictable, we can now recreate the entire keystream! Using xn+1� 5xn+3 (mod8),
we �nd x2� 0, x3� 3, ::: In other words, PRG=1; 0; 3; :::= (001 000 011 :::)2.
Hence, Eve can decrypt the ciphertext and obtain m = c � PRG = (111 111 111)2 � (001 000 011)2 =
(110 111 100)2.

Armin Straub
straub@southalabama.edu

16


