Theorem 141. Let N = pq and d, e be as in RSA. Then, for any $m, m \equiv m^{de} \pmod{N}$.

Comment. Using Euler's theorem, this follows immediately for residues m which are invertible modulo N. However, it then becomes tricky to argue what happens if m is a multiple of p or q.

Proof. By the Chinese remainder theorem, we have $m \equiv m^{de} \pmod{N}$ if and only if $m \equiv m^{de} \pmod{p}$ and $m \equiv m^{de} \pmod{q}$.

Since $de \equiv 1 \pmod{(p-1)(q-1)}$, we also have $de \equiv 1 \pmod{p-1}$. By little Fermat, it follows that $m^{de} \equiv m \pmod{p}$ for all m that are invertible modulo p. On the other hand, if m is not invertible modulo p, then this is obviously true (because both sides are congruent to 0). Thus, $m \equiv m^{de} \pmod{p}$ for all m. Likewise, modulo q.

Theorem 142. Determining the secret private key d in RSA is as difficult as factoring N.

Proof. Let us show how to factor N = pq if we know e and d.

- First, let t be as large as possible such that 2^t divides ed 1. (Note that $t \ge 2$. Why?!) Write $m = (ed - 1)/2^t$.
- Pick a random invertible residue a. Observe that $a^{ed-1} \equiv 1 \pmod{N}$. In particular, $(a^m)^{2^t} \equiv 1$. Hence, the multiplicative order of a^m must divide 2^t .
- Suppose that a^m has different order modulo p than modulo q. (Both orders must divide 2^t.)
 [This works for at least half of the (invertible) residues a. If we are unlucky, we just select another a.]
- Suppose a^m has order 2^s modulo p, and larger order modulo q. Then, $a^{2^sm} \equiv 1 \pmod{p}$ but $a^{2^sm} \not\equiv 1 \pmod{q}$. Consequently, $\gcd(a^{2^sm} - 1, N) = p$.
- Of course, we don't know s (because we don't know p and q), but we can just go through all s = 1, 2, ..., t 1. One of these has to reveal the factor p.

However. It is not known whether knowing d is actually necessary for Eve to decrypt a given ciphertext c. This remains an important open problem.

Example 143. (homework) Bob's public RSA key is N = 323, e = 101. Knowing d = 77, factor N using the approach of the previous theorem.

Solution. Here, de - 1 = 7776, which is divisible by 2^5 . Hence, t = 5 and m = 243.

• Let's pick a = 2. $a^m = 2^{243} \equiv 246 \pmod{323}$ must have order dividing 2^5 . $gcd(246^2 - 1, 323) = 19$ (so we don't even need to check $gcd(246^{2^s} - 1, 323)$ for s = 2, 3, 4) Hence, we have factored $N = 17 \cdot 19$.

Comment. Among the $\phi(323) = 16 \cdot 18 = 288$ invertible residues *a*, only 36 would not lead to a factorization. The remaining 252 residues all reveal the factor 19.

Another project idea. Run some numerical experiments to get a feeling for the number of residues that result in a factorization.

The ElGamal public key cryptosystem and discrete logarithms

Proposed by Taher ElGamal in 1985

The original paper is actually very readable: https://dx.doi.org/10.1109/TIT.1985.1057074

- Whereas the security of RSA relies on the difficulty of factoring, the security of ElGamal relies on the difficulty of computing discrete logarithms.
- Suppose $b = a^x \pmod{N}$. Finding x is called the **discrete logarithm problem** mod N. If N is a large prime p, then this problem is believed to be difficult.

Note. If $b = a^x$, then $x = \log_a(b)$. Here, we are doing the same thing, but modulo N. That's why the problem is called the discrete logarithm problem.

(ElGamal encryption)

- Bob chooses a prime p and a primitive root g (mod p).
 Bob also randomly selects a secret integer x and computes h = g^x (mod p).
- Bob makes (p, g, h) public. His (secret) private key is x.
- To encrypt, Alice first randomly selects an integer y. Then, $c = (c_1, c_2)$ with $c_1 = q^y \pmod{p}$ and $c_2 = h^y m \pmod{p}$.
- How does Bob decrypt?

We'll see next time!