
Sketch of Lecture 26 Fri, 3/16/2018

Theorem 141. Let N = pq and d; e be as in RSA. Then, for any m, m�mde (modN).

Comment. Using Euler's theorem, this follows immediately for residues m which are invertible modulo N .
However, it then becomes tricky to argue what happens if m is a multiple of p or q.

Proof. By the Chinese remainder theorem, we have m�mde (modN) if and only if m�mde (mod p) and
m�mde (mod q).
Since de � 1 (mod (p ¡ 1)(q ¡ 1)), we also have de � 1 (mod p ¡ 1). By little Fermat, it follows that
mde�m (mod p) for all m that are invertible modulo p. On the other hand, if m is not invertible modulo
p, then this is obviously true (because both sides are congruent to 0). Thus, m�mde (mod p) for all m.
Likewise, modulo q. �

Theorem 142. Determining the secret private key d in RSA is as di�cult as factoring N .

Proof. Let us show how to factor N = pq if we know e and d.

� First, let t be as large as possible such that 2t divides ed¡ 1. (Note that t> 2. Why?!)
Write m=(ed¡ 1)/2t.

� Pick a random invertible residue a. Observe that aed¡1� 1 (modN). In particular, (am)2
t� 1.

Hence, the multiplicative order of am must divide 2t.

� Suppose that am has di�erent order modulo p than modulo q. (Both orders must divide 2t.)
[This works for at least half of the (invertible) residues a. If we are unlucky, we just select another a.]

� Suppose am has order 2s modulo p, and larger order modulo q.
Then, a2

sm� 1 (mod p) but a2
sm�/ 1 (mod q). Consequently, gcd(a2

sm¡ 1; N)= p.

� Of course, we don't know s (because we don't know p and q), but we can just go through all s=1;
2; :::; t¡ 1. One of these has to reveal the factor p. �

However. It is not known whether knowing d is actually necessary for Eve to decrypt a given ciphertext c.
This remains an important open problem.

Example 143. (homework) Bob's public RSA key is N = 323, e = 101. Knowing d = 77,
factor N using the approach of the previous theorem.

Solution. Here, de¡ 1= 7776, which is divisible by 25. Hence, t=5 and m= 243.

� Let's pick a=2. am=2243� 246 (mod323) must have order dividing 25.
gcd(2462¡ 1; 323) = 19 (so we don't even need to check gcd(2462

s¡ 1;323) for s=2; 3; 4)
Hence, we have factored N = 17 � 19.

Comment. Among the �(323)=16 �18=288 invertible residues a, only 36 would not lead to a factorization.
The remaining 252 residues all reveal the factor 19.
Another project idea. Run some numerical experiments to get a feeling for the number of residues that
result in a factorization.
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The ElGamal public key cryptosystem and discrete logarithms

� Proposed by Taher ElGamal in 1985
The original paper is actually very readable: https://dx.doi.org/10.1109/TIT.1985.1057074

� Whereas the security of RSA relies on the di�culty of factoring, the security of ElGamal
relies on the di�culty of computing discrete logarithms.

� Suppose b=ax (modN). Finding x is called the discrete logarithm problem mod N .
If N is a large prime p, then this problem is believed to be di�cult.
Note. If b= ax, then x= loga(b). Here, we are doing the same thing, but modulo N . That's why
the problem is called the discrete logarithm problem.

(ElGamal encryption)

� Bob chooses a prime p and a primitive root g (mod p).
Bob also randomly selects a secret integer x and computes h= gx (mod p).

� Bob makes (p; g; h) public. His (secret) private key is x.

� To encrypt, Alice �rst randomly selects an integer y.

Then, c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).

� How does Bob decrypt?
We'll see next time!
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