
Sketch of Lecture 7 Fri, 1/26/2018

We saw that ciphertext only attacks on the one-time pad are entirely hopeless. What about
other attacks?
Attacks like known plaintext or chosen plaintext don't apply if the key is only to be used once.

Yet, the one-time pad by itself provides little protection of integrity. The next example shows
how tampering is possible without knowledge about the key.

Example 45. Alice sends an email to Bob using a one-time pad. Eve knows that and concludes
that, per email standard, the plaintext must begin with To: Bob. Eve wants to tamper with
the message and change it to To: Boo, for a light scare.

� Eve wants to change the 7th letter of the plain text m from b to o.

� Since b is 0x62 and o is 0x6F , we have b� o=0x0D. Hence, b� 0x0D= o.

� Therefore, if e=0x000000000000||| |{z}}} }
6 characters

0D00:::, then �TO: Bob:::�|| |{z}} }
m

� e= �TO: Boo:::�|| |{z}} }
m0

.

� Alice sends c=m�k. If Eve changes the ciphertext c to c0= c� e, then Bob receives c0 and decrypts

it to c0� k=m� k||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}
=c

� e
zzz z}|{{{ {c0

� k=m� e=m0, which is what Eve intended.

Example 46. One thing that makes the one-time pad di�cult to use is that the key needs to
be the same length as the plaintext. What if we have a shorter key and just repeat it until it
has the length we need?
That's essentially the Vigenere cipher (in a di�erent alphabet).

Solution. Assuming the attacker knows the length of our key (if she doesn't she can just try all possibilities),
this is equivalent to using the one-time pad several times with the same key. That should never be done!
Even using a key twice means that we become susceptible to a ciphertext only attack (see Example 44).

So, repeating the key is a terrible idea. However, the idea to create a longer (random) key out
of a shorter (random) key is not (these are pseudorandom generators, to be discussed next).

Let us emphasize that, in order to be perfectly con�dential, the key for a one-time pad must be
chosen completely at random (otherwise, an attacker can make assumptions on the used keys).
Indeed, the need to generate random numbers shows in every modern cipher.

Stream ciphers

Once we have a way to generate pseudorandom numbers, we can use the idea of the one-
time pad to create a stream cipher.
Start with key of moderate size (say, 128 bits).
Use the key k and a PRG (pseudorandom generator) to generate a much longer pseudorandom keystream
PRG(k). Then encrypt Ek(m)=m�PRG(k).
We lost perfect con�dentiality. Security relies on choice of PRG (must be unpredictable).

As with the one-time pad, we must never reuse the same keystream! That does not mean that
we cannot reuse the key: we can do that using a nonce: Ek(m)=m�PRG((nonce; k)), where
the seed is produced by combining the nonce and k (for instance, just concatenating them).
The nonce is then passed (unencrypted) along with the message.
To make sure that we never reuse the same keystream, we must never use the same nonce with the same key.

Armin Straub
straub@southalabama.edu

13

Sage

Any serious cryptography involves computations that need to be done by a machine. Let us
see how to use the open-source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use
it in the cloud at cocalc.com from any browser.
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 47. Let's start with some basics.

Sage] 17 % 12

5

Sage] (1 + 5) % 2 # don't forget the brackets

0

Sage] inverse_mod(17, 23)

19

Sage] xgcd(17, 23)

(1;¡4; 3)

Sage] -4*17 + 3*23

1

Sage] euler_phi(84)

24

Example 48. Why is the following bad?

Sage] 3^1003 % 101

27

The reason is that this computes 31003 �rst, and then reduces that huge number modulo 101:
Sage] 3^1003

35695912125981779196042292013307897881066394884308000526952849942124372128361032287601\
01447396641767302556399781555972361067577371671671062036425358196474919874574608035466\
17047063989041820507144085408031748926871104815910218235498276622866724603402112436668\
09387969298949770468720050187071564942882735677962417251222021721836167242754312973216\
80102291029227131545307753863985171834477895265551139587894463150442112884933077598746\
0412516173477464286587885568673774760377090940027

We know how to avoid computing huge intermediate numbers. Sage does the same if we instead
use something like:

Sage] power_mod(3, 1003, 101)

27

Armin Straub
straub@southalabama.edu

14

