Sketch of Lecture 1 Mon, 1/8/2018

Review: The calculus of congruences

a=b (modn) means a=b+mn (for some m €7Z)

In that case, we say that “a is congruent to b modulo n".

In other words: a=b (modn) if and only if a — b is divisible by n.

Example 1. 17=5 (mod12) as well as 17=29=—-7 (mod 12)

We say that 5,17,29, —7 all represent the same residue modulo 12.
There are exactly 12 different residues modulo 12.

Example 2. Every integer x is congruent to one of 0,1,2,3,4,...,11 modulo 12.
We therefore say that 0, 1,2, 3,4, ...,11 form a complete set of residues modulo 12.
Another natural complete set of residues modulo 12 is: 0, &1, +2, ..., 5,6

[-6 is not included because —6 =6 modulo 12.]

Online homework. When entering solutions modulo n for online homework, your answer needs to be from
one of the two natural sets of residues above.

Example 3. 67-24=4-3=5 (mod?7)

The point being that we can (and should!) reduce the factors individually first (to avoid the large number
we would get when actually computing 67 - 24 first). This idea is crucial in the computations we (better, our
computers) will later do for cryptography.

Example 4. (but careful!) If a=b (modn), then ac=bc (modn) for any integer c.
However, the converse is not true!l We can have ac = bc (mod n) without a =b (mod n)
(even assuming that ¢ #0).

For instance. 2-4=2-1 (mod6) but 41 (mod6)
However. 2:4=2-1 (mod6) means 2-4=2-1+ 6m. Hence, 4=1+ 3m, or, 4=1 (mod 3).
The issue is that 2 is not invertible modulo 6.

‘ a is invertible modulo n <= gcd(a,n)=1

Similarly, ab=0 (modn) does not always imply that a=0 (modn) or b=0 (modn).
For instance. 4-15=0 (mod6) but 4#0 (mod6) and 15%#0 (mod6)

Good news. These issues do not occur when n is a prime p.
e If ab=0 (modp), then a=0 (mod p) or b=0 (mod p).

e Suppose c£0 (modp). If ac=be (modp), then a=b (mod p).
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Example 5. Determine 47! (mod 13).

Recall. This is asking for the modular inverse of 4 modulo 13. That is, a residue x such that 4 =1 (mod 13).
Brute force solution. We can try the values 0,1,2,3, ..., 12 and find that = 10 is the only solution modulo
13 (because 4-10=1 (mod 13)).

This approach may be fine for small examples when working by hand, but is not practical for serious congru-
ences. On the other hand, the Euclidean algorithm, reviewed below, can compute modular inverses extremely

efficiently.
Glancing. In this special case, we can actually see the solution if we notice that 4 - 3 = 12, so that
4-3=—1 (mod 13) and therefore 4~! = —3 (mod 13).

Example 6. Solve 4z =5 (mod 13).

Solution. From the previous problem, we know that 4~! = —3 (mod 13).
Hence, r=4"!.5=-3.5=—2 (mod 13).

(Bézout’s identity) Let a,b€ Z (not both zero). There exist x, y € Z such that
ged(a,b) =ax + by.

The integers =, y can be found using the extended Euclidean algorithm.

In particular, if gcd(a,b) =1, then a=' =z (modb).

Here, Z denotes the set of all integers 0, +1, 42, ...

Example 7. Determine 16! (mod 25).

Solution. We determine 16~ ! (mod 25) using the extended Euclidean algorithm:

ged(16,25)  [25]=1-[16]+9 or: 9=1-[25]-1-[16]
= ged(9,16) [16]=2-[9]-2 2=—1-[16]+2-[9]
=gcd(2,9) [9]=4-[2]+1 1=[9]-4-[2]
=1

Backtracking through this, we find that Bézout’s identity takes the form

U= [@-4[2) = 4[6)-7[0] = -7 [+

Reducing —7-25+ 11-16 =1 modulo 25, we get 11-16=1 (mod 25).
Hence, 167! =11 (mod 25).

Course comment:
Homework is posted after every class to our course website.
Today's homework needs to be submitted online before 1/17.
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