
Sketch of Lecture 33 Wed, 4/12/2017

A quick summary of some aspects of RSA and ElGamal.

� As long as appropriate key sizes are used, both RSA and ElGamal appear secure.
About the same key size needed for both: at least 1024 bits. By now, maybe 2048 bits.

� The security of both RSA and ElGamal can be compromised by using a cryptographically
insecure PRG to generate the secret pieces p; q (for RSA) or x (for ElGamal).

� It is important to have di�erent ciphers, especially ones that rely on the di�culty of
di�erent mathematical problems.
Comment. Factoring N = pq and computing discrete logarithms modulo p are the two di�erent
problems for RSA and ElGamal, respectively. It is not known whether the ability to solve one of
them would make it signi�cantly easier to also solve the other one. However, historically, advances
in factorization methods (like the number �eld sieve) have subsequently lead to similar advances in
computing discrete logarithms. Both problems seem of comparable di�culty.

� Both are multiplicatively homomorphic, but RSA looses this property when padded.

After advertising open implementations last time, let us end this discussion with a cautionary
example in that regard.

Example 182. The following story from last year made lots of headlines:
https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/

After a year, it was noticed that, in the open-source tool Socat (�Netcat++�), the Di�e-
Hellman key exchange was implemented using a hard-coded 1024 bit prime p (nothing wrong
with that), which wasn't prime! Explain how this could be used as a backdoor.
Solution. The security of the Di�e-Hellman key exchange relies on the di�culty of taking discrete logarithms
modulo p. If we can compute x in h= gx (mod p), then we can break the key exchange.
Now, if p= p1p2, then we can use the CRT to �nd x by solving the two (much easier!) discrete logarithm
problems

h= gx (mod p1); h= gx (mod p2):

This is an example of a NOBUS backdoor (�nobody but us�), because the backdoor can only be used by
the person who knows the (secret) factorization of p.
Comment. In the present case, the Socat �prime� p actually has the two small factors 271 and 13597, and
p/(271 �13597) is still not a prime (but nobody has been able to factor it). This might hint more at a foolish
accident than a malicious act.

Important follow-up question. Of course, the issue has been �xed and the composite number has been
replaced by the developers with a large prime. However, should we trust that it really is a prime?
We don't need to trust anyone because primality checking is simple! We can just run the Miller�Rabin test
N times. If the number was composite, there is only a 4¡N chance of us not detecting it. (In OpenSSL, for
instance, N = 40 and the chance for an error 2¡80 is astronomically low.) Both Fermat and Miller�Rabin
instantly detect the number here to be composite (for certain).
Comment. This illustrates both what's good and what's potentially problematic about open source projects.
The potentially problematic part for crypto is that Eve might be among the people working on the project.
The good part is that (hopefully!�) many experts are working on or looking into the code. Thus, hopefully,
any malicious acts on Eve's part should be spotted soon (in fact, with proper code review, should never
make it into any production version). Of course, this �hope� requires ongoing e�ort on the parts of everyone
involved, and the willingness to fund such projects.
�However, sometimes very few people are involved in a project, despite it being used by millions of users. For
instance, see: https://en.wikipedia.org/wiki/Heartbleed

Armin Straub
straub@southalabama.edu

65



Example 183. (common modulus attack on RSA) Bob's public RSA key is (N;e). However,
when Alice requests this public key from Bob, her message gets intercepted by Eve who instead
sends (N; e2) back to Alice, where e2 di�ers from e in only one bit. Alice uses (N; e2) to
encrypt her message and sends c2 to Bob. Of course, Bob fails to decrypt Alice's message and
so resends his public key to Alice (this time, Eve doesn't intervene). Alice now uses (N; e) to
encrypt her message and send c to Bob.
Show that Eve can �gure out the plaintext from c and c2!!
Solution. Eve knows c�me (modN) as well as c2�me2 (modN).
The crucial observation is that cxc2

y�mexme2y=mex+e2y (modN). Eve can choose any x and y.
She knows m if she can arrange x and y such that ex+ e2y=1.
Since e ¡ e2 = �2r, we have gcd(e; e2) = 1 (why?!). Hence, Eve can indeed �nd such x and y using the
extended Euclidean algorithm.

Example 184. (homework) In ElGamal, is it necessary that g is a primitive root?
Solution. No, but almost yes.
g does not need to be a primitive root in order for ElGamal to work just �ne.
However, in order for ElGamal to be secure, we need the order of g to be large (so �almost� a primitive root).
In fact, we need this order to have a large prime factor.

9 Application: hash functions

A hash function H is a function, which takes an input x of arbitrary length, and produces an
output H(x) of �xed length, say, b bit.

Example 185. (error checking) When Alice sends a long messagem to Bob over a potentially
noisy channel, she also sends the hash H(m). Bob, who receives m0 (which, he hopes is m)
and h, can check whether H(m0)= h.
Comment. This only protects against accidental errors inm (much like the check digits in credit card numbers
we discussed earlier). If Eve intercepts the message (m;H(m)), she can just replace it with (m0;H(m0)) so
that Bob receives the message m0.
Eve's job can be made much more di�cult by sending m and H(m) via two di�erent channels. For instance,
in software development, it is common to post hashes of �les on websites (or announce them otherwise),
separately from the actual downloads. For that use case, we should use a one-way hash (see next example).

� The hash function h(x) is called one-way if, given y, it is computationally infeasible to
compute m such that h(m)= y. [Also called preimage-resistant.]

This makes the hash function (weakly) collision-free in the sense that given a messagem it is di�cult
to �nd a second message m0 such that h(m)=h(m0). [Also called second preimage-resistant.]

� It is called strongly collision-resistant if it is computationally infeasible to �nd two
messages m1;m2 such that h(m1)= h(m2).
Comment. Every hash function must have many collisions. On the other hand, the above require-
ment says that �nding even one must be exceedingly di�cult.

Example 186. (error checking, cont'd) Alice wants to send a message m to Bob. She wants
to make sure that nobody can tamper with the message (maliciously or otherwise). How can
she achieve that?
Solution. She can use a one-way hash function H, send m to Bob, and publish (or send via some second
route) y=H(m). Because H is one-way, Eve cannot �nd a value m0 such that H(m0)= y.

Armin Straub
straub@southalabama.edu

66


