
Sketch of Lecture 29 Wed, 3/29/2017

For ElGamal, the message space actually is f1; 2; :::; p¡ 1g. m=0 is not permitted.

That's, of course, no practical issue. For instance, we could simply identify f1;2; :::; p¡1g with f0;1; :::; p¡2g
by adding/subtracting 1.

Example 161. Bob's public ElGamal key is (p; g; h)= (23; 10; 11).

(a) Encrypt the message m=5 (�randomly� choose y=2) and send it to Bob.

(b) Encrypt the message m=5 (�randomly� choose y=4) and send it to Bob.

(c) Break the cryptosystem and determine Bob's secret key.

(d) Use the secret key to decrypt c=(8; 7).

(e) Likewise, decrypt c=(18; 19).

Solution.

(a) The ciphertext is c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).
Here, c1= 102� 8 (mod23) and c2= 112 � 5� 6 � 5� 7 (mod23). Hence, the ciphertext is c=(8; 7).

(b) Now, c1= 104� 18 (mod23) and c2= 114 � 5� 13 � 5� 19 (mod23) so that c=(18; 19).

(c) We need to solve 10x� 11 (mod23). This yields x=3.
(Since we haven't learned a better method, we just try x=1; 2; 3; ::: until we �nd the right one.)

(d) We decrypt m= c2c1
¡x (mod p).

Here, m=7 � 8¡3� 7 � 4� 5 (mod23).
[8¡1� 3 (mod23), so that 8¡3� 33� 4 (mod23). Or, use Fermat: 8¡3� 819� 4 (mod23).]

(e) In this case, m= 19 �18¡3� 19 � 16� 5 (mod23).

Example 162. (homework) If Bob selects p= 23, how many possible choices does he have
for g? Which are these?

Solution. g must be a primitive root modulo p.

� Recall that, modulo a prime p, there always exists a primitive root g.
Here, the smallest primitive root is g=5. (Or, we could just use g= 10 from the previous example.)
To check that, we need to verify that the order of 5 (mod23) is 22. Since the order must divide 22,
it is enough to check that 52�/ 1 (mod23) and 511�/ 1 (mod23).

� By de�nition, g has order p¡ 1. Then, all other invertible residues can be expressed as ga, which has
order (p¡1)/gcd(p¡1; a). In order for ga to be a primitive root, we therefore need gcd(p¡1; a)=1.
There are �(p¡ 1)= �(22)= 10 such values a in the range 1; 2; :::; 22.

� The possible 10 values for a are 1; 3; 5; 7; 9; 13; 15;17; 19; 21.
The corresponding 10 primitive roots are 51;53;55;57; ::: (mod23). Explicitly computing these powers,
the primitive roots are 5; 7; 10; 11;14; 15; 17; 19;20; 21 (mod23).
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We indicated that the security of ElGamal depends on the di�culty of computing discrete
logarithms. Here is a more precise statement.

Theorem 163. Decrypting c to m in ElGamal is exactly as di�cult as the computational
Di�e�Hellman problem (CDH).

The CDH problem is the following: given g; gx; gy (mod p), �nd gxy (mod p). It is believed to be hard.

Proof. Recall that the public key is (p; g; h)= (p; g; gx). The ciphertext is c=(gy; hym)= (gy; gxym).
Hence, determining m is equivalent to �nding gxy.
Since g; gx; gy (mod p) are known, this is precisely the CDH problem. �

Example 164. In fact, even the decisional Di�e�Hellman problem (DDH) is believed to
be di�cult.
The DDH problem is the following: given g; gx; gy; r (mod p), decide whether r� gxy (mod p). Obviously,
this is simpler than the CDH problem, where gxy needs to be computed. Yet, it, too, is believed to be hard.
Comment. Well, at least it is hard (modulo p) if we always want to do better than guessing.
Here's how we can sometimes do better than guessing: if gx or gy are quadratic residues (this is actually
easy to check modulo primes p using quadratic reciprocity and the Legendre symbol), then gxy is quadratic
residue (why?!). Hence, if r is not a quadratic residue, we can conclude that r�/ gxy.

7.1 Di�e�Hellman key exchange

The key idea that makes ElGamal encryption work is that Alice (her private secret is y) and
Bob (his private secret is x) actually share a secret: gxy

Since gx is publicly known, Alice can compute gxy=(gx)y using her secret y.
Similarly, since gy is known from the ciphertext, Bob can compute gxy=(gy)x using his secret x.

(Di�e�Hellman key exchange)

� Alice or Bob choose a prime p and a primitive root g (mod p).

� Bob randomly selects a secret integer x and reveals gx (mod p) to everyone.

Alice randomly selects a secret integer y and reveals gy (mod p) to everyone.

� As above, Alice and Bob now share the secret gxy (mod p).

Why is this secure? We need to see why eavesdropping Eve cannot (simply) obtain the secret gxy (modp).
She knows g; gx; gy (mod p) and needs to �nd gxy (mod p).
This is precisely the CDH problem, which is believed to be hard.

Example 165. (homework) You are Eve. Alice and Bob select p = 53 and g = 5 for a
Di�e�Hellman key exchange. Alice sends 43 to Bob, and Bob sends 20 to Alice. What is their
shared secret?
Solution. Let's crack Alice's secret y (you can also attack Bob).
For that, we need to �nd y such that 5y= 43 (mod53).

We try all possibilities: 52=25, 53�19, 54�19 �5�¡11, 55�¡11 �5�¡2, 56�¡2 �5�¡10�43 (mod53).
Hence, Alice's secret is y=6. The shared secret is 206� 9 (mod53).

Armin Straub
straub@southalabama.edu

58


