
Sketch of Lecture 21 Fri, 3/3/2017

4.3 Further comments on DES

The S-boxes S1; S2; :::; S8 are lookup tables (for each 6 bit input, they specify a 4 bit output).
� They have been carefully designed.

For instance, their design already anticipated and protected against di�erential cryptanalysis (which
wasn't publicly known at the time).

� On the other hand, they do not follow any simple rule. In particular, they must not be linear (or close
to it). If they were, DES would be entirely insecure.
[Slightly more speci�cally, if the S-boxes were linear, then all of DES would be, and, in the usual spirit
of linear algebra, a few (m; c) pairs would su�ce to recover the key.]

� They are also designed so that if one bit is changed in the input, then at least 2 bits of the output
change.
Important consequence. Go through one application of the round function fki(R), and convince
yourself that �ipping one bit of R has the e�ect of �ipping at least two bits of fki(R). Repeating this
for 16 rounds, you can see how the goal of di�usion seems to be achieved: changing one bit of the
plaintext should change the ciphertext completely.

Example 121. Sometime it is stated that DES works with a 64 bit key size. In that case, every
8th bit is a parity bit, but the algorithm really operates with 56 bit keys.
Comment. Apparently, the NSA was interested in strengthening DES against any attack (recall that devel-
opments like di�erential cryptanalysis were foreseen) except brute-force. Indeed, the NSA seems to have
pushed for a key size of 48 bits versus proposed 64 bits, and the result was a compromise for 56 bits.

Example 122. (homework) Can we (easily) break DES if we know one of the round keys?
Solution. Absolutely! Recall that each round key is 48 bits taken from the overall 56 bit DES key. Hence,
we know all but 8 bits of the key. We just need to brute-force these 28= 256 many possibilities.

Example 123. If DES is insecure because of its 56 bit key size, why not just increase that?
Solution. DES was designed speci�cally for that key size. Increasing it necessitates a completely new analysis
on how to choose the S-boxes and so on.
On the other hand. See the next example for how to leverage the original DES to increase the key size.
However. With the advent of powerful successors like AES there are very few reasons to use 3DES for new
cryptosystems. (One slight advantage of 3DES is its particular small footprint in hardware implementations.)

Example 124. (3DES) A simple approach to increasing the key size of DES, without the need
to design and analyze a new block cipher, is 3DES. It consists of three applications of DES
to each block and is still considered secure.

c=Ek3(Dk2(Ek1(m)))

The 3DES standard allows three keying options:
� k1; k2; k3 independent keys: 3� 56= 168 key size, but e�ective key size is 112

� k1= k3: 2� 56= 112 key size, e�ective key size is stated as 80 by NIST

� k1=k2=k3: this is just the usual DES, and provides backwards compatibility (which is a major reason
for making the middle step a decryption instead of another encryption).

Comment. The reason for the reduced e�ective key sizes is the meet-in-the-middle attack. It is also the
reason why something like 2DES is not used. See next example!

Armin Straub
straub@southalabama.edu

40



Example 125. (no 2DES) Explain why �2DES� does not really provide extra security over DES.
Solution. Let's denote DES encryption with Ek and decryption with Dk. The keys k are 56 bits.
Then, 2DES encrypts according to c=Ek2(Ek1(m)). The key size of 2DES is 56+ 56= 112 bits.

� A brute-force attack, would go through all possibilities for pairs (k1; k2), of which there is 256 � 256=
2112, to check whether c=Ek2(Ek1(m)). That requires 2

112 DES computations.

� On the other hand, note that c=Ek2(Ek1(m)) is equivalent to Dk2(c)=Ek1(m).
Assuming su�cient memory, we �rst go through all 256 keys k2 and store the valuesDk2(c) in a lookup
table.
We then go through all 256 keys k1, compute Ek1(m) and see if we have stored that value before.
(Even though this is a huge table, the cost for checking whether an element is in the table can be
disregarded; thanks to the magic of hash tables!)
Whenever we have a candidate key k = (k1; k2; k3) (there will usually be many!), we do additional
checks (like testing another block (m0; c0)) to see if k is really the key we are after.
The total number of DES computations to break 2DES therefore is 256 + 256 = 257, which is hardly
more than for breaking DES!

This is known as a meet-in-the-middle attack.
https://en.wikipedia.org/wiki/Meet-in-the-middle_attack

Comment. The price to pay is that this attack also requires memory for storing This sort of approach is
referred to as a time-memory trade-o�. Instead of brute-forcing 2DES in 2112 time, we can attack it in 257

time when using 256 memory.
Comment. This applies to any block cipher, not just DES!
Comment. For some block ciphers it is the case that for any pair of keys k1; k2, there is a third key k3
such that Ek2(Ek1(m))=Ek3(m). In that case, we say that the cipher is a group, and double (or triple, or
quadruple) encryption does not add any additional security! DES, however, is not a group.

Example 126. (homework) Explain why 3DES, used with three di�erent keys, only has
e�ective key size 112.
Solution. (details to be �lled in) Instead of going through all k1; k2; k3 to check whether

c=Ek3(Dk2(Ek1(m)))

(which would take 256 � 256 � 256=2168 DES computations), we can use that the latter is equivalent to

Dk3(c)=Dk2(Ek1(m)):

Now proceed as in the previous example ::: to see that we can break 3DES with 2112 DES computations.
How much memory do we need?

Armin Straub
straub@southalabama.edu

41


