
Quiz #9 MATH 126 � Calculus II
Thursday, Nov 14

Please print your name:

Problem 1. (3 points) Write down the geometric series. When does it converge, and what does it converge to?

Solution. The geometric series
X
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Problem 2. (2 points) Write down the p-series. When does it converge?

Solution. The p-series
X
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1
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converges if and only if p> 1.

Problem 3. (5 points) Determine the radius of convergence of the power series
X
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n
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Solution. We apply the ratio test with an=
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The ratio test implies that
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(x¡ 2)n converges if jx¡ 2j< 1
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Therefore, the radius of convergence is 1

3
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Problem 4. (bonus!) What is the exact interval of convergence for the series above?

Solution. The ratio test is inconclusive for jx¡ 2j= 1
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is the harmonic series (p-series with p=1) which diverges (because p6 1).

� x= 5
3
:
X
n=1

1
3n

n

�
¡1
3

�n
=

X
n=1

1
(¡1)n
n

converges by the alternating series test ( lim
n!1
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Hence, the exact interval of convergence is
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