Please print your name:

Problem 1. Consider the region in the first quadrant bounded by the curves $y = x^2$, $y = 2 - x^2$ and $x = 0$.

Use the shell method to find thevolume of the solid generated by revolving this region about the *y*-axis.

Solution. First, make a sketch! Note that the region extends from $x = 0$ to $x = 1$ (if $x = 1$ is not clear from the sketch, you can compute the intersection of $y = x^2$, $y = 2 - x^2$: $x^2 = 2 - x^2$ simplifies to $x^2 = 1$ or $x = \pm 1$).

The shell at position *x* has radius *x* and height $(2 - x^2) - x^2 = 2 - 2x^2$. Given a thickness of d*x*, it therefore has (approximate) volume $2\pi x(2 - 2x^2)dx$. Hence, the total volume is

$$
\int_0^1 2\pi x (2 - 2x^2) dx = 4\pi \int_0^1 (x - x^3) dx = 4\pi \left[\frac{1}{2} x^2 - \frac{1}{4} x^4 \right]_0^1 = 4\pi \left(\frac{1}{2} - \frac{1}{4} \right) = \pi.
$$

Alternatively. Here is how the disk/washer method looks like for the same problem. In this case, we consider horizontal cross-sections from $y = 0$ to $y = 2$ (see sketch). If $0 \le y \le 1$, then we have disks of radius \sqrt{y} ($y = x^2$ is equivalent to $x = \sqrt{y}$). On the other hand, if $1 \le y \le 2$, then we have disks of radius $\sqrt{2-y}$ ($y = 2 - x^2$ is equivalent to $x = \sqrt{2-y}$. Overall, the total volume is again

$$
\int_0^1 \pi (\sqrt{y})^2 \mathrm{d}y + \int_1^2 \pi (\sqrt{2-y})^2 \mathrm{d}y = \pi \int_0^1 y \mathrm{d}y + \pi \int_1^2 (2-y) \mathrm{d}y = \pi \left[\frac{1}{2} y^2 \right]_0^1 + \pi \left[2y - \frac{1}{2} y^2 \right]_1^2 = \frac{1}{2} \pi + \pi \left(2 - \frac{3}{2} \right) = \pi.
$$