Midterm #1

Please print your name:

No notes, graphing calculators or other tools are permitted. There are 30 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (3 points) Evaluate the following indefinite integrals.

(a)
$$\int \frac{\mathrm{d}x}{2x} =$$

(b)
$$\int \sin(5x) \, \mathrm{d}x = \boxed{}$$

$$\int \frac{\mathrm{d}x}{x^2 + 1} = \boxed{}$$

Problem 2. (5 points) Using the shell method, set up an integral (but do not evaluate it) for the volume of the solid obtained by revolving about the *y*-axis the region (in the first quadrant) enclosed by the curves

$$y = \frac{1}{x}$$
, $y = \frac{1}{x^2}$, $x = 3$.

Problem 3. (2 points) Set up an integral (but do not evaluate it) for the length of the curve $y = x^3$ for $1 \le x \le 2$.

Problem 4. (5 points) Evaluate the following indefinite integral: $\int \cos(3t)\sin^5(3t)dt$								
Problem 5. (5 points) E	valuate the integral \int_0^2	$\frac{x^2}{\sqrt{x^3+1}} \mathrm{d}x.$						

Problem 6. (5 points) So	olve the initial value	problem $\frac{\mathrm{d}y}{\mathrm{d}x} = y^2$,	y(0) = 1.		
Problem 7. (5 points) A of the cone is at the bottom 5 ft above the cone's rim. D). Write down an in	tegral for how muc		so pump the water to	
Problem 8. (tiny bonus!)) Very roughly, wha	at is the distance fr	om us to the moon?		,

(extra scratch paper)