Open problem. It is unknown whether the Flint Hills series $\sum_{n=1}^{\infty} \frac{1}{n^3 \sin^2(n)}$ converges.

We expect that it converges: https://mathoverflow.net/questions/24579/

Note that $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n^3}$ converges by comparison with the *p*-series with p=3>1 (because $0 \leq \sin^2(x) \leq 1$).

Such a comparison does not work in the Flint Hills series because $\sin(n)$ can be close to 0 (if *n* is close to π , 2π , 3π ,...).

Example 183. What is the difference between the parametric curves

 $x = \cos(t), y = \sin(t)$ with $t \in [0, 2\pi]$ and $x = \cos(2\pi t), y = \sin(2\pi t)$ with $t \in [0, 1]$?

Solution. It is the same curve (unit circle around the origin). Only the parametrization differs: in the second case, we "go through" the circle at 2π times the speed compared to the first case.

Example 184. Find the slope of the line tangent to the curve $x = \cos(t)$, $y = \sin(t)$ at the point corresponding to $t = \frac{\pi}{4}$. Also determine $\frac{d^2y}{dx^2}$ at that point.

Solution. (slope via sketch) Make a sketch! Since the curve is the unit circle and $\frac{\pi}{4} = 45^{\circ}$, the slope is clearly -1. We cannot likewise see the exact value of $\frac{d^2y}{dx^2}$. However, we can observe that the curve is concave down at our point so that $\frac{d^2y}{dx^2} < 0$.

Solution. The tangent line has slope $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t}{-\sin t}$, which for $t = \frac{\pi}{4}$ is $\frac{\cos \frac{\pi}{4}}{-\sin \frac{\pi}{4}} = \frac{\sqrt{\frac{1}{2}}}{-\sqrt{\frac{1}{2}}} = -1$. For $\frac{d^2y}{dx^2}$, we write it as $\frac{dy'}{dx}$ where $y' = \frac{dy}{dx}$ and compute it as

$$\frac{\mathrm{d}y'}{\mathrm{d}x} = \frac{\mathrm{d}y'/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{-\frac{\mathrm{d}}{\mathrm{d}t}\frac{\cos t}{\sin t}}{-\sin t} = \frac{-\frac{\sin^2 t - \cos^2 t}{\sin^2 t}}{\sin t} = -\frac{1}{\sin^3 t}$$

For $t = \frac{\pi}{4}$, this is $-\frac{1}{\sin^3(\frac{\pi}{4})} = -(\sqrt{2})^3 = -\sqrt{8}$.

For comparison. Using Cartesian coordinates, we have $y = \sqrt{1 - x^2}$ and the point in question is $\left(\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right)$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x}{2\sqrt{1-x^2}} = -\frac{x}{\sqrt{1-x^2}}$$

When $x = \sqrt{\frac{1}{2}}$, the slope $\frac{dy}{dx}$ is $-\frac{\sqrt{\frac{1}{2}}}{\sqrt{1-\frac{1}{2}}} = -1$. For the second derivative,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(-\frac{x}{\sqrt{1-x^2}} \right) = -\frac{\sqrt{1-x^2} - x \left(-\frac{x}{\sqrt{1-x^2}} \right)}{1-x^2}.$$

Without simplifying, we plug in $x = \sqrt{\frac{1}{2}}$ to find that $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ is $-\frac{\sqrt{\frac{1}{2}} - \sqrt{\frac{1}{2}}(-1)}{\frac{1}{2}} = -4\sqrt{\frac{1}{2}} = -\sqrt{8}$.

Note. We can also work from other descriptions of the circle such as $x^2 + y^2 = 1$. Do it!

Armin Straub straub@southalabama.edu **Example 185.** Consider the curve described, for t in $[0, 4\pi]$, by the parametric equations

$$x = t\cos(t), \quad y = t\sin(t).$$

(a) Make a rough sketch of the curve.

Highlight the point corresponding to $t=\frac{\pi}{2}$ and sketch the tangent line through that point.

- (b) Find the slope of the line tangent to the curve at the point corresponding to $t = \frac{\pi}{2}$.
- (c) Setup an integral for the arc length of the curve.
- (d) Determine $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ at the point corresponding to $t = \frac{\pi}{2}$.

Solution.

(a) This is a spiral starting at the origin (this is the point we get for t = 0) and completing exactly 2 turns to end at the point $(4\pi, 0)$ on the *x*-axis (for $t = 4\pi$).

- (b) The tangent line has slope $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{\sin(t) + t\cos(t)}{\cos(t) t\sin(t)}.$ At our point, that is when $t = \frac{\pi}{2}$, the slope is $\frac{\sin(\frac{\pi}{2}) + \frac{\pi}{2}\cos(\frac{\pi}{2})}{\cos(\frac{\pi}{2}) - \frac{\pi}{2}\sin(\frac{\pi}{2})} = \frac{1}{-\frac{\pi}{2}} = -\frac{2}{\pi}.$
- (c) The arc length of our curve is

$$\int_{0}^{4\pi} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^{2}} \,\mathrm{d}t = \int_{0}^{4\pi} \sqrt{(\cos(t) - t\sin(t))^{2} + (\sin(t) + t\cos(t))^{2}} \,\mathrm{d}t = \int_{0}^{4\pi} \sqrt{1 + t^{2}} \,\mathrm{d}t$$

The final integral could be evaluated using $\int \sqrt{1+t^2} dt = \frac{1}{2}t\sqrt{1+t^2} + \frac{1}{2}\log(t+\sqrt{1+t^2}) + C$. If you want a challenge, try to derive this indefinite integral using our techniques.

(d) We already computed that $y' = \frac{dy}{dx} = \frac{\sin(t) + t\cos(t)}{\cos(t) - t\sin(t)}$. We next compute $\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{dy'/dt}{dx/dt}$. Finally, we plug in $t = \frac{\pi}{2}$. This calculation is a bit messy. The final answer should be $-\frac{2}{\pi} - \frac{16}{\pi^3}$. Comment. From the plot, we knew that, at that point, $\frac{d^2y}{dx^2} < 0$ since the curve is visibly concave down.