
Notes for Lecture 35 Mon, 11/18/2024

Example 166. (review) The p-series
X
n=1

1
1
np

converges if and only if p> 1.

The alternating p-series
X
n=1

1
(¡1)n
np

converges if and only if p> 0.

For instance,
X
n=1

1
(¡1)n

n
p (p=1/2) converges. However, it does not converge absolutely.

Series that converge but don't converge absolutely are said to converge conditionally.
One has to be more careful with series that only converge conditionally. For instance, we cannot rearrange the
order of the terms arbitrarily without affecting the overall sum.

Example 167.

(a) Determine the Taylor series of f(x)= cos(x) at x=0.

(b) Spell out the Taylor polynomial of order 4 for f(x)= cos(x) at x=0.

Solution.

(a) The derivatives of f(x) cycle through cos(x);¡sin(x);¡cos(x); sin(x); :::.
In particular, the values f (n)(0) cycle through 1; 0;¡1; 0; :::.
That is, f (2n)(0)= (¡1)n and f (2n+1)(0)=0.
Therefore, the Taylor series of f(x)= cos(x) at x=0 is

X
n=0

1
f (n)(0)
n!

xn=
X
n=0

1
f (2n)(0)
(2n)!

x2n=
X
n=0

1
(¡1)n
(2n)!

x2n:

Note. Assuming that cosx can be written as a power series at x=0, we conclude that

cosx=
X
n=0

1
(¡1)n
(2n)!

x2n:

Again, this can be justified via Taylor's formula or a differential equation.

(b) Truncating the Taylor series, the Taylor polynomial of order 4 is

1¡ x2

2
+
x4

24
:

Example 168. Determine the Taylor series of
Z
e¡x

2
dx at x=0.

Solution. Since ex=
X
n=0

1
xn

n!
, it follows that e¡x

2
=
X
n=0

1
(¡x2)n
n!

=
X
n=0

1
(¡1)n
n!

x2n.

Integrating term by term, we conclude that
Z
e¡x

2
dx=

X
n=0

1
(¡1)n

n!(2n+1)
x2n+1+C.

Note. Since e¡x
2
is an even function, its Taylor series only includes the terms x2n (which are even) and not

terms of the form x2n+1 (which are odd). See also the Taylor series that we got for cos(x) (which is even).
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Example 169. Determine the Taylor series of f(x)=x3+3x2+3x+3 at x=¡1.
Solution. By definition, the Taylor series in question is given by

X
n=0

1
f (n)(¡1)

n!
(x+1)n= f(¡1)+ f 0(¡1)(x+1)+

f 00(¡1)
2!

(x+1)2+
f 000(¡1)

3!
(x+1)3+ :::

Clearly f(¡1)= 2 and we to compute the other values f (n)(¡1) as follows:

� f 0(x)= 3x2+6x+3 so that f 0(¡1)=0.

� f 00(x)= 6x+6 so that f 00(¡1)= 0.

� f 00(x)=
3

8x5/2
so that f 000(1)= 3

8
.

� f 000(x)= 6 so that f 00(¡1)=6.

� We note that f (4)(x)= 0 so that f (n)(¡1)=0 for all n> 4.

The Taylor series therefore is

f(¡1)+ f 0(¡1)(x+1)+
f 00(¡1)
2!

(x+1)2+
f 000(¡1)

3!
(x+1)3=2+

6
3!
(x+1)3=2+ (x+1)3:

Comment. For a polynomial f(x), the Taylor series is the same polynomial just expanded around a different
point. In particular, the Taylor series only has terms up to the degree of f(x).

Example 170. Using familiar simpler power series, find the Taylor series at x=0 for the following:

(a)
4

2+7x3

(b)
2

1+3x
+ e7x

Solution.

(a) Using the geometric series, we have 4

2+7x3
=
4
2
� 1

1¡
�
¡7

2
x3
�=2X

n=0

1 �
¡7
2
x3
�n

=2
X
n=0

1 �
¡7
2

�n
x3n.

(b) Using both the geometric series 1
1¡x =

X
n=0

1
xn and the exponential series ex=

X
n=0

1
xn

n!
, we have

2
1+3x

+ e7x=2 � 1
1¡ (¡3x) + e7x=2

X
n=0

1
(¡3x)n+

X
n=0

1
(7x)n

n!
=
X
n=0

1 �
2 � (¡3)n+ 7n

n!

�
xn:
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Example 171. Find a power series (about x=0) for 1
1+x2

.

Solution. We plug ¡x2 for x in the geometric series
X
n=0

1
xn=

1
1¡ x to getX

n=0

1
(¡x2)n=

X
n=0

1
(¡1)nx2n= 1

1+ x2
. This is valid for j¡x2j< 1 or, equivalently, jxj< 1.

In particular, this power series has radius of convergence 1.

Example 172. Find a power series (about x=0) for arctan(x).

Solution. Recall that
Z

1

1+x2
dx= arctan(x)+C.

In Example 171, we observed that 1

1+ x2
=
X
n=0

1
(¡1)nx2n and that this power series converges if jxj< 1.

We now integrate both sides of
1

1+ x2
=
X
n=0

1
(¡1)nx2n to find a power series for arctan(x).Z X

n=0

1
(¡1)nx2n dx=

X
n=0

1
(¡1)n
2n+1

x2n+1+C

Hence, arctan(x)=
X
n=0

1
(¡1)n
2n+1

x2n+1+C. Since arctan(0)=0, it follows that C =0.

Example 173. What is the exact interval of convergence in the previous example?
Solution. Since the convergence radius is 1, we know that the series converges for jxj<1, and diverges if jxj>1.
We don't yet know whether the series converges for x=�1.

� For x=1, we get the series
X
n=0

1
(¡1)n
2n+1

=1¡ 1
3
+
1
5
¡ 1
7
+ :::

This is an alternating series because the terms are alternately positive and negative. Due to the alter-
nating series test, the series converges (an=

1

2n+1
is positive, decreasing and converges to 0).

� For x=¡1, we get the series ¡
X
n=0

1
(¡1)n
2n+1

which is ¡1 times what we get for x=1.

In particular, this series converges as well.

Our conclusion is that the exact interval of convergence is [¡1; 1].

Comment. The series for x=�1 are not absolutely convergent because, if we sum instead the absolute values
of the terms, then we get

P
n=0
1 1

2n+1
=1+

1

3
+
1

5
+
1

7
+ :::, and we know that this series diverges, because it

is �half� of the harmonic series. This means that the series for x=�1 are only conditionally convergent.

Since arctan(1)= �

4
, we conclude that

X
n=0

1
(¡1)n
2n+1

=1¡ 1
3
+
1
5
¡ 1
7
+ :::=

�
4
.

Note that arctan(¡1)=¡arctan(1)=¡�

4
, which explains why we got the same series times ¡1.
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