Example 155. Determine the radius of convergence of the following power series and their exact interval of convergence.

(a)
$$
\sum_{n=0}^{\infty} (n^2 + 4) x^n
$$

\nThis is a power series about $x = 0$.
\n(b)
$$
\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} (x - 3)^n
$$

\nThis is a power series about $x = 3$.

Solution.

(a) We apply the ratio test with $a_n = (n^2 + 4) x^n$.

$$
\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{((n+1)^2 + 4) x^{n+1}}{(n^2 + 4) x^n} \right| = |x| \frac{n^2 + 2n + 5}{n^2 + 4} \to |x| \text{ as } n \to \infty
$$

The ratio test implies that $\sum_{n=0}^{\infty} (n^2 + 4) x^n$ converges if $|x| < 1$.

Thus the radius of convergence is 1.

The ratio test does not tell us what happens when $|x|=1$. We now look at those cases more carefully:

• $x = 1$: $\sum_{n=0}^{\infty} (n^2 + 4)$ clearly diverges (because $\lim_{n \to \infty} (n^2 + 4)$ is not 0). $n \rightarrow \infty$ $\qquad \qquad$ (n^2+4) is not 0).

•
$$
x = -1
$$
: $\sum_{n=0}^{\infty} (n^2 + 4)(-1)^n$ clearly diverges (because $\lim_{n \to \infty} (n^2 + 4)(-1)^n$ is not 0).

Combined, $\sum_{n=0}^{\infty} (n^2+4) x^n$ converges if and only if x is in $(-1,1)$ (the exact interval of convergence).

(b) We apply the ratio test with
$$
a_n = \frac{2^n}{\sqrt{n}} (x-3)^n
$$
.

$$
\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{2^{n+1}(x-3)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{2^n(x-3)^n}\right| = 2|x-3|\sqrt{\frac{n}{n+1}} \to 2|x-3| \text{ as } n \to \infty
$$

The ratio test implies that
$$
\sum_{n=0}^{\infty} \frac{2^n}{n!} (x-3)^n
$$
 converges if $|x-3| < \frac{1}{2}$.

The ratio test implies that $\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} (x-3)^n$ converges if $|x-3| < \frac{1}{2}$. 2

So the radius of convergence is $\frac{1}{2}$. 2 . The ratio test is inconclusive for $|x-3|=\frac{1}{2}$ or, equivalently, $x=3-\frac{1}{2}=\frac{5}{2}$ and $x=3+\frac{1}{2}=\frac{7}{2}$: 2 :

- $x = \frac{5}{2}$; $\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} \left(-\frac{1}{2}\right)^n = \sum_{n=1}^{\infty}$ $\frac{5}{2}$: $\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} \left(-\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges by the alternation $\left(\frac{n}{2}\right)^{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ converges $\left(\frac{1}{2}\right)^n = \sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}$ converges by the alternating series test $\left(\lim_{n\to\infty} \frac{1}{\sqrt{n}}\!=\!0\right)$. $\frac{1}{\sqrt{n}} = 0$. **Comment**. We could have also just recognized this as the alternating p -series with $p = \frac{1}{2}$. .
- $x = \frac{7}{2}$; $\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} \left(\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ $\frac{7}{2}$: $\sum_{n=1}^{\infty}\frac{2^n}{\sqrt{n}}\left(\frac{1}{2}\right)^n=\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ is the *p*-series with $p\!=\!\frac{1}{2}$ which diverges (because $p\!\leqslant\!1$).

Combined, the exact interval of convergence of $\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} (x-3)^n$ is $\left[\frac{5}{2}, \frac{7}{2}\right)$. $(\frac{5}{2}, \frac{7}{2})$. .

2

Example 156. Determine the radius of convergence of $\sum_{n=1}^{\infty} \frac{5^n}{n^2} (4x-3)^{2n}$ (this is a power series $\frac{\partial}{\partial n^2}(4x-3)^{2n}$ (this is a power series about $\frac{3}{4}$) and its exact interval of convergence. $\frac{n-1}{2}$

Solution. We apply the ratio test with $a_n = \frac{5^n}{n^2}(4x-3)^{2n}$. $\frac{6}{n^2}(4x-3)^{2n}$. $|a_{n+1}|$ $|5^{n+1}$ $|16^{n+1}|$ $\left| \frac{n+1}{a_n} \right| = \left| \frac{5^{n+1}}{(n+1)^2} (4x-3)^{2n+2} \frac{5^n (4x-1)^n}{5^n (4x-1)^n} \right|$ $\left| \frac{5^{n+1}}{(n+1)^2} (4x-3)^{2n+2} \frac{n^2}{5^n (4x-3)^{2n}} \right| = 5|4x-3|^2 \frac{n^2}{(n+1)^2}$ $\left| \frac{n^2}{5^n (4x-3)^{2n}} \right| = 5|4x-3|^2 \frac{n^2}{(n+1)^2} \to 5|4x-3|^2$ as $n \to \infty$ The ratio test implies that $\sum_{n=1}^{\infty} \frac{5^n}{n^2} (4x-3)^{2n}$ converges if $5|4x-3|^2 < 1$. To focus on *x*, we can rewrite this as $|4x-3|<\frac{1}{\sqrt{5}}$ or, equivalently, $\left|x-\frac{3}{4}\right|<\frac{1}{4\sqrt{5}}.$ $\frac{3}{4} < \frac{1}{4\sqrt{5}}.$

In this latter form, we see that the radius of convergence is $\frac{1}{4\sqrt{5}}.$

The ratio test is inconclusive for $\left|x-\frac{3}{4}\right|=\frac{1}{4\sqrt{5}}$ or, equivalently, x : $\frac{3}{4}$ = $\frac{1}{4\sqrt{5}}$ or, equivalently, $x = \frac{3}{4} - \frac{1}{4\sqrt{5}}$ and $x = \frac{3}{4} + \frac{1}{4\sqrt{5}}$.

- $x = \frac{3}{4} + \frac{1}{4\sqrt{5}}$: $\sum_{n=1}^{\infty} \frac{5^n}{n^2} \left(\frac{1}{\sqrt{5}}\right)^{2n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is the *p*-series with $p = 2$ which $\overline{\sqrt{5}}$ $\overline{5}$ $\overline{2}$ $\overline{2}$ $\overline{n^2}$ is the p-series \ $\bigg)^{2n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is the *p*-series with $p=2$ which converges (because $p>1$).
- $x = \frac{3}{4} \frac{1}{4\sqrt{5}}$ $\sum_{n=1}^{\infty} \frac{5^n}{n^2} \left(-\frac{1}{\sqrt{5}} \right)^n$ $\frac{1}{4} - \frac{1}{4\sqrt{5}}$ $\sum_{n=1}^{\infty} \frac{n^2}{n^2} \left(-\frac{1}{\sqrt{5}} \right)$ $\frac{1}{4\sqrt{5}}$: $\sum_{n=1}^{\infty} \frac{5^n}{n^2} \left(-\frac{1}{\sqrt{5}} \right)^{2n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is the same series and so co $1 \Big\}$ $\begin{array}{ccc} \infty & 1 \end{array}$ $\overline{\sqrt{5}}$ $\overline{5}$ $\overline{2}$ $\overline{2}$ $\overline{n^2}$ is the same ser $\bigg)^{2n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is the same series and so converges as well. is the same series and so converges as well.

Combined, the exact interval of convergence of $\sum_{n=1}^{\infty} \frac{5^n}{n^2} (4x-3)^{2n}$ is $\left[\frac{3}{4} - \frac{1}{4\sqrt{5}}, \frac{3}{4} + \frac{1}{4\sqrt{5}} \right]$. \mathbf{I} and \mathbf{I} and \mathbf{I} and \mathbf{I} .