Review. Ratio test

The alternating series test

Theorem 149. (Alternating series test) If a_n is positive, decreasing with $\lim_{n \to \infty} a_n = 0$, then the series $\sum_{n=N}^{\infty} (-1)^n a_n$ converges.

Why? Proof by picture!

Example 150. Does the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converge?

Solution. Yes, it converges by the alternating series test: $a_n = \frac{1}{n}$ is positive, decreasing, and $\lim_{n \to \infty} a_n = 0$.

Important. Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ does not converge absolutely.

Example 151. For which p does the alternating p-series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converge? For which p does it converge absolutely?

Solution.

- If p > 0, then the series converges by the alternating series test, because $a_n = \frac{1}{n^p}$ is positive, decreasing, and $\lim_{n \to \infty} a_n = 0$. If $p \leq 0$, then $\lim_{n \to \infty} \frac{(-1)^n}{n^p}$ is not zero. Therefore, the series diverges.
- By definition, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges absolutely if and only if $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. Since this is just the usual *p*-series, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges absolutely if and only if p > 1.

In summary, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges if and only if p > 0, and converges absolutely if and only if p > 1.

Power series

Definition 152. A power series (about x = 0) is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots$$

More generally, a **power series** about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots$$

Armin Straub straub@southalabama.edu

Example 153. Determine all x for which the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges.

Solution. We apply the ratio test with $a_n = \frac{x^n}{n}$. $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{x^{n+1}}{n+1}\frac{n}{x^n}\right| = |x|\frac{n}{n+1} \to |x| \text{ as } n \to \infty$ The ratio test implies that $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges if |x| < 1 (and diverges if |x| > 1).

Note that the ratio test does not tell us what happens when |x| = 1. We need to look at those cases more carefully:

- x = 1: In this case we get the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ which we know diverges.
- x = -1: In this case we get the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ which we know converges.

In summary, the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges if and only if x is in [-1,1).

Note. This is a power series around 0. The series converges for all x less than 1 away from 0. This is why we say that the power series has radius of convergence 1.

Looking ahead. Which function is hiding behind $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$?

Power series can be differentiated term-by-term and so $f'(x) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n} = \sum_{n=1}^{\infty} x^{n-1} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. Therefore, $f(x) = \int \frac{1}{1-x} dx = -\ln|1-x| + C$.

Finally, the fact that f(0) = 0 implies that C = 0. This means that $f(x) = -\ln|1 - x|$. Note that this function is nice at x = 0 (and around it) but that it has a problem for x = 1. Since converging power series do not have problems, this is one way to see that the radius of convergence is 1.

Let us again look at the special values x = 1 and x = -1. First, we clearly have $\lim_{x \to 1} f(x) = +\infty$.

On the other hand, $\lim_{x \to -1} f(x) = -\ln(2)$ implying that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots = -\ln(2) \approx -0.693.$

Theorem 154. Every power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ has a radius of convergence R, meaning:

- (a) if R=0, then the series converges only for x=a,
- (b) if $0 < R < \infty$, then the series converges for all x such that |x a| < R

but diverges if |x-a| > R (in other words, R is as large as possible),

(c) if $R = \infty$, then the series converges for all x.

Note that, if $0 < R < \infty$, no general statement can be made for the case |x - a| = R.

The exact interval of convergence can be (a - R, a + R) or [a - R, a + R) or (a - R, a + R] or [a - R, a + R].