Review. Ratio test

The alternating series test

Theorem 149. (Alternating series test) If a_n is positive, decreasing with $\lim\,a_n\!=\!0$, then \mid $n \rightarrow \infty$ the series $\sum_{n=N}^{\infty} (-1)^n a_n$ converges.

Why? Proof by picture!

Example 150. Does the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converge? converge? **Solution.** Yes, it converges by the alternating series test: $a_n = \frac{1}{n}$ is positive, decreasing, and $\frac{1}{n}$ is positive, decreasing, and $\lim_{n\to\infty}a_n=0$. $\lim_{n \to \infty} a_n = 0.$

 $\textsf{Important.} \text{ Since the harmonic series } \sum_{n=1}^\infty \frac{1}{n} \text{ diverges, the series } \sum_{n=1}^\infty \frac{(-1)^n}{n} \text{ does not converge absolutely.}$ does not converge absolutely.

Example 151. For which p does the alternating p -series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converge? For which p does it converge absolutely?

Solution.

If $p > 0$, then the series converges by the alternating series test, because $a_n = \frac{1}{n^p}$ is positive, decreasing, $\frac{1}{n^p}$ is positive, decreasing, and $\lim a_n = 0$. If $p \leqslant 0$, then $\lim \frac{1-p}{n}$ $\lim_{n \to \infty} a_n = 0$. If $p \leqslant 0$, then $\lim_{n \to \infty} \frac{(-1)^n}{n^p}$ is not zero. Therefore, the series diverges.

By definition, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges absolutely if and only if $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^p} \right|$ $\left| \frac{p}{p} \right|^n$ converges absolutely if and only if $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. $\left| \frac{p}{p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. $\frac{p}{p}$ converges. Since this is just the usual *p*-series, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges absolutely if and only if $p > 1$. $\frac{f}{p}$ converges absolutely if and only if $p > 1$.

In summary, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges if and only if $p > 0$, and converge $\frac{p}{p}$ converges if and only if $p > 0$, and converges absolutely if and only if $p > 1$.

Power series

Definition 152. A **power series** (about $x=0$) is a series of the form

$$
\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots
$$

More generally, a **power series** about $x = a$ is a series of the form

$$
\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots
$$

Armin Straub straub@southalabama.edu ⁶⁷

Example 153. Determine all x for which the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges.

Solution. We apply the ratio test with $a_n = \frac{x^n}{n}$. *n* . $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{n+1} \frac{n}{x^n} \right| = |x| \frac{n}{n+1} \rightarrow |x| \text{ as } n \rightarrow \infty$ $\frac{n+1}{a_n} = \left| \frac{x}{n+1} \frac{n}{x^n} \right| = |x| \frac{n}{n+1} \to |x| \text{ as } n \to \infty$ The ratio test implies that $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges if $|x| < 1$ (and diverges if $|x| > 1$). $\frac{n}{n}$ converges if $|x| < 1$ (and diverges if $|x| > 1$).

Note that the ratio test does not tell us what happens when $|x|=1$. We need to look at those cases more carefully:

 $\frac{v}{n}$ converges.

- \bullet $x=1$: In this case we get the harmonic series $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ which we know diverges.
- \bullet $x = -1$: In this case we get the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ which we know converges.

In summary, the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges if and only if x is in $[-1,1)$. $\frac{\partial}{\partial n}$ converges if and only if x is in $[-1,1)$.

Note. This is a power series around 0. The series converges for all x less than 1 away from 0. This is why we say that the power series has radius of convergence 1.

> *n* ?

Looking ahead. Which function is hiding behind $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$?

Power series can be differentiated term-by-term and so $f'(x) = \sum_{n=1}^{\infty} \frac{n x^{n-1}}{n} = \sum_{n=1}^{\infty} x^{n-1} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$ $1 - x$ ^{\cdot} . Therefore, $f(x) = \int \frac{1}{1-x} dx = -\ln|1-x| + C$ $\frac{1}{1-x}dx = -\ln|1-x| + C.$

Finally, the fact that $f(0) = 0$ implies that $C = 0$. This means that $f(x) = -\ln|1 - x|$. Note that this function is nice at $x = 0$ (and around it) but that it has a problem for $x = 1$. Since converging power series do not have problems, this is one way to see that the radius of convergence is 1 .

Let us again look at the special values $x = 1$ and $x = -1$. First, we clearly have $\lim_{x \to 1} f(x) = +\infty$.

 $x \rightarrow 1$ ² On the other hand, $\lim\; f(x)\!=\!-\!\ln(2)$ implying that $\, \sum\,$ $\lim_{x \to -1} f(x) = -\ln(2)$ implying that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - ... = -\ln(2) \approx -0.693.$ $\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \ldots = -\ln(2) \approx -0.69$ $\frac{1}{3} + \frac{1}{4} - \dots = -\ln(2) \approx -0.693.$

Theorem 154. Every power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has a **radius of convergence** R , meaning:

- (a) if $R = 0$, then the series converges only for $x = a$,
- (b) if $0 < R < \infty$, then the series converges for all *x* such that $|x a| < R$

but diverges if $|x - a| > R$ (in other words, R is as large as possible),

(c) if $R = \infty$, then the series converges for all x.

Note that, if $0 < R < \infty$, no general statement can be made for the case $|x - a| = R$.

The exact interval of convergence can be $(a-R, a+R)$ or $[a-R, a+R)$ or $(a-R, a+R]$ or $[a-R, a+R]$.