Notes for Lecture 27 Wed, 10/30/2024

Quiz. Four limits that we can "see" plus one that we need to work out, like the following:

$$
\lim_{n \to \infty} \sqrt[n]{\frac{3}{n^2}} = \lim_{n \to \infty} \left(\frac{3}{n^2}\right)^{1/n} = \lim_{n \to \infty} \exp\left(\ln\left(\left(\frac{3}{n^2}\right)^{1/n}\right)\right) = \lim_{n \to \infty} \exp\left(\frac{1}{n}\ln\left(\frac{3}{n^2}\right)\right) = \exp(0) = 1
$$
\nwhere we used that

\n
$$
\lim_{n \to \infty} \frac{1}{n} \ln\left(\frac{3}{n^2}\right) = \lim_{n \to \infty} \frac{\ln(3) - 2\ln(n)}{n} \quad \text{as } n \to \infty
$$
\n
$$
\lim_{n \to \infty} \frac{-2 \cdot \frac{1}{n}}{1} = 0.
$$

Series

A tortoise racing a Greek hero... **Zeno's paradox**:

https://en.wikipedia.org/wiki/Zeno%27s_paradoxes#Achilles_and_the_tortoise

Example 127.
$$
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1
$$

Solution. Visual!

Solution. Redo this example by taking the limit of a geometric sum.

Geometric series

Review. The geometric sum is

$$
\sum_{n=0}^{M} x^{n} = 1 + x + x^{2} + \dots + x^{M} = \frac{1 - x^{M+1}}{1 - x}.
$$

Taking the limit $M \!\to\! \infty$ in the geometric sum, we get: $\lim_{M \to \infty} x^M = 0$ if $|x| < 1$)

:

(geometric series) If $|x| < 1$, then $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots = \frac{1}{1-x}.$ $x^n = 1 + x + x^2 + \ldots = \frac{1}{1}$ $1 - x$ ^{\cdot} If $|x| \geq 1$, then the geometric series diverges.

Example 128. Compute the following series (or state that it diverges):

(a)
$$
\sum_{n=0}^{\infty} \frac{1}{2^n}
$$

\n(b) $\sum_{n=3}^{\infty} \frac{1}{2^n}$
\n(c) $\sum_{n=0}^{\infty} \frac{7}{10^n}$
\n(d) $\sum_{n=2}^{\infty} \frac{7}{10^n}$
\n(e) $\sum_{n=0}^{\infty} \frac{5}{3^n}$
\n(f) $\sum_{n=2}^{\infty} 3 \cdot 4^{-n}$
\n(g) $\sum_{n=0}^{\infty} \left(\frac{7}{2^n} - \frac{3^n}{5^n}\right)$
\n(h) $\sum_{n=0}^{\infty} \frac{5^n}{3^n}$
\n(i) $\sum_{n=0}^{\infty} (-1)^n x^{2n}$

Armin Straub Armin Straub 58 (1992)
straub@southalabama.edu 58 (1992) Solution.

(a)
$$
\sum_{n=0}^{\infty} \frac{1}{2^n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1-\frac{1}{2}} = 2
$$

\n(b)
$$
\sum_{n=3}^{\infty} \frac{1}{2^n} = \sum_{n=0}^{\infty} \frac{1}{2^n} - \left(\frac{1}{2^0} + \frac{1}{2^1} + \frac{1}{2^2}\right) = 2 - \left(1 + \frac{1}{2} + \frac{1}{4}\right) = \frac{1}{4}
$$

\n(c)
$$
\sum_{n=0}^{\infty} \frac{7}{10^n} = 7 \sum_{n=0}^{\infty} \left(\frac{1}{10}\right)^n = 7 \cdot \frac{1}{1-\frac{1}{10}} = \frac{70}{9}
$$

\n(d)
$$
\sum_{n=2}^{\infty} \frac{7}{10^n} = \sum_{n=0}^{\infty} \frac{7}{10^n} - \left(\frac{7}{10^0} + \frac{7}{10^1}\right) = \frac{70}{9} - \left(7 + \frac{7}{10}\right) = \frac{7}{90}
$$

\n(e)
$$
\sum_{n=0}^{\infty} \frac{5}{3^n} = 5 \sum_{n=0}^{\infty} \frac{1}{3^n} = 5 \cdot \frac{1}{1-\frac{1}{3}} = \frac{15}{2}
$$

\n(f)
$$
\sum_{n=2}^{\infty} 3 \cdot 4^{-n} = 3 \sum_{n=2}^{\infty} \frac{1}{4^n} = 3 \left(\frac{1}{1-\frac{1}{4}} - 1 - \frac{1}{4}\right) = \frac{1}{4}
$$

\n(g)
$$
\sum_{n=0}^{\infty} \left(\frac{7}{2^n} - \frac{3^n}{5^n}\right) = 7 \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n - \sum_{n=0}^{\infty} \left(\frac{3}{5}\right)^n = 7 \cdot \frac{1}{1-\frac{1}{2}} - \frac{1}{1-\frac{3}{5}} = 14 - \frac{5}{2} = \frac{23}{2}
$$

\n(h)
$$
\sum_{n=0}^{\infty} \frac{5^n}{3^n} = \sum_{n=0}^
$$

The very last example illustrates an important point. Namely, it shows that there is a novel way to think about (and get our hands on) functions like $\frac{1}{1+x^2}$. $1 + x^2$.

Recall that we care about this function in particular, because it was a building block in partial fractions. For instance, we know that its antiderivative is arctan(*x*).

This is the main reason why we are learning about series in a course that focuses on functions!

We will see that it is very convenient to work with series representing functions: they can be differentiated and integrated, and give us an opportunity to work with functions that cannot be written in terms of the "usual" functions.

Example 129. Express the number 0.7777... as a rational number.

Solution. (using geometric series)

$$
0.7777... = \frac{7}{10} + \frac{7}{100} + \frac{7}{1000} + ... = \sum_{n=1}^{\infty} \frac{7}{10^n} = 7\left(\frac{1}{1 - \frac{1}{10}} - 10^0\right) = 7\left(\frac{10}{9} - 1\right) = \frac{7}{9}
$$

Solution. (highschool) Everyone is familiar with $0.3333... = \frac{1}{2}$. This implies that $0.1111...$ $\frac{1}{3}$. This implies that $0.1111... = \frac{1}{3} \cdot 0.3333... = \frac{1}{9}$. $\frac{1}{3} \cdot 0.3333... = \frac{1}{9}$. Hence, our number is $0.7777... = 7 \cdot 0.1111... = \frac{7}{9}$. . $\frac{1}{9}$.