Notes for Lecture 26 Mon, $10/28/2024$

 ∞ 1¹

Review. The following forms are indeterminate: $\frac{a\infty}{\infty}$, $\frac{a_0}{0}$, $\frac{a_0}{0}$, ∞ , ∞ , ∞ , ∞ , $\frac{a_0}{0}$, $\frac{a_1}{0}$, $\frac{a_1}{0}$, $\frac{a_2}{0}$, $\frac{a_1}{0}$, $\frac{a_2}{0}$, $\frac{a_1}{0}$, $\frac{a_2}{0}$ \ln in the last three cases, we can always write these as $\frac{a\infty}{\infty}$ or $\frac{a\cdot 0}{0}$, so that we can apply L'Hospital.

Example 123. Determine the following limits:

- (a) $\lim_{n \to \infty}$ $n \rightarrow \infty$ *n* ln *n n*
- (b) $\lim n^{1/n}$ $n \rightarrow \infty$ *n* 1/*n*
- (c) $\lim_{n \to \infty} \sqrt[n]{\pi^2}$ $n \rightarrow \infty$ $\sqrt[n]{\pi^2}$
- (d) $\lim_{n \to \infty} \sqrt[n]{n^2}$ $n \rightarrow \infty$ $\sqrt[n]{n^2}$ $\left(1+2\right)^n$

(e)
$$
\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n
$$

Solution.

- (a) $\lim_{x \to \infty} \frac{\ln n}{n} = \lim_{x \to \infty} \frac{1}{n} = 0$ $n \rightarrow \infty$ *n* $n \rightarrow \infty$ 1 $\frac{\ln n}{n} \stackrel{\text{LH}}{=} \lim_{n \to \infty} \frac{1/n}{1} = 0$ $n \rightarrow \infty$ 1 $\frac{1/n}{1} = 0$ We were able to use L'Hospital because the limit was of the form $\frac{d^{(1)}(X)}{d^{(2)}}$.
- (b) $\lim n^{1/n} = \lim \exp(\ln(n^{1/n})) = 1$ $n \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$ $n^{1/n} = \lim_{n \to \infty} \exp(\ln(n^{1/n})) = \lim_{n \to \infty} \exp\left(-\ln(n) \right)$ $n \rightarrow \infty$ $n \rightarrow \infty$ $\left\{ n \right\}$ $\exp(\ln(n^{1/n})) = \lim_{n \to \infty} \exp(\frac{1}{n} \ln(n)) = \exp(0) = 1$ *n*→∞ (n) / *n* 1 $\exp\left(\frac{1}{n}\ln(n)\right) = \exp(0) = 1$ $\frac{1}{n}$ ln(*n*) = exp(0) = 1 Note that we used the limit from the previous part.

Comment. We wrote $exp(x) = e^x$ simply to avoid using exponents for typographical reasons.

(c) $\lim_{n \to \infty} \sqrt[n]{\pi^2} = \lim_{n \to \infty} \pi^{2/n} = \pi^0 = 1$ $n \rightarrow \infty$ $n \rightarrow \infty$ $\sqrt[n]{\pi^2} = \lim \pi^{2/n} = \pi^0 = 1$ $n \rightarrow \infty$ $\pi^{2/n} = \pi^0 = 1$

(d)
$$
\lim_{n \to \infty} \sqrt[n]{n^2} = \lim_{n \to \infty} n^{2/n} = \lim_{n \to \infty} \exp(\ln(n^{2/n})) = \lim_{n \to \infty} \exp\left(\frac{2}{n}\ln(n)\right) = \exp(0) = 1
$$

(e) $\lim_{x \to 0} (1 + \frac{2}{x}) = \lim_{x \to 0} \exp(\ln(1 +$ $n \rightarrow \infty$ $\langle n \rangle$ $n \rightarrow \infty$ $\langle \langle n \rangle$ $\left(1, 2\right)^n$ $\left(1, 2\right)^n$ $1 + \frac{2}{n}$ $\right)^n = \lim_{n \to \infty} \exp\left(\ln\left(\left(1 + \frac{2}{n}\right)^n\right)\right) = \lim_{n \to \infty} \exp\left(\frac{2n}{n} + \frac{2}{n}\right)$ $\exp\left(\ln\left(\left(1+\frac{2}{n}\right)^n\right)\right) = \lim_{n \to \infty} \exp\left(n \ln\left(1+\frac{2}{n}\right)\right) = e^2$ $\exp\left(n\ln\left(1+\frac{2}{n}\right)\right)=e^2$ 2

In the final step, we used that $\lim n \ln(1+\frac{2}{n}) = \lim \frac{n}{1}$ $n \rightarrow \infty$ $\left(\begin{array}{cc}n & n \rightarrow \infty & \frac{1}{n}\end{array}\right)$ $n \ln \left(1 + \frac{2}{n} \right) = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{2}{n} \right)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{1 + \frac{2}{n}} \cdot \left(-\frac{2}{n^2} \right)}{\frac{1}{n^2}}$ $\ln\left(1+\frac{2}{n}\right) = \lim_{n \to \infty} \frac{1}{1+\frac{2}{n}} \cdot \left(-\frac{2}{n^2}\right)$ $\frac{n}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{-\frac{1}{n^2}} = 2.$ $1 \quad (2)$ $\frac{1}{1+\frac{2}{n}}\cdot\left(-\frac{2}{n^2}\right)}{1-\frac{2}{n^2}}$ $\frac{1}{-\frac{1}{n^2}}$ = 2. **Comment.** More generally, $\lim_{n \to \infty} (1 + \frac{x}{n}) = e^x$ for any x. $n \rightarrow \infty$ $\langle n \rangle$ $\left(1+\frac{x}{n}\right)^n = e^x$ for any *x*.

The following is a precise definition of the limit of a sequence:

Definition 124. $\lim a_n = L$ means that: $n \rightarrow \infty$ for every $\varepsilon > 0$ there is a value N such that, for all $n > N$, $|a_n - L| < \varepsilon$.

Here are a few basic facts about limits:

- $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$
- If $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} b_n = B$ then $\lim_{n \to \infty} (a_n + b_n) = A + B$ and $\lim_{n \to \infty} (a_n b_n) = AB$.
- If $\lim_{n \to \infty} a_n = A$ then $\lim_{n \to \infty} f(a_n) = f(A)$ provided that $f(x)$ • If $\lim_{n \to \infty} a_n = A$ then $\lim_{n \to \infty} f(a_n) = f(A)$ provided that $f(x)$ is continuous at *A*.
Armin Straub

straub@southalabama.edu ⁵⁶

Example 125.
$$
\lim_{n \to \infty} x^n = \begin{cases} \infty, & \text{if } x > 1, \\ 1, & \text{if } x = 1, \\ 0, & \text{if } -1 < x < 1, \\ \text{does not exist, if } x \leq -1. \end{cases}
$$

If you think of a representative case for each situation, then this (important!) example becomes very natural:

- $\lim_{n \to \infty} 2^n =$ $n \rightarrow \infty$
- $\lim_{n \to \infty} 1^n =$ $n \rightarrow \infty$
- $\lim_{n \to \infty} (1/2)^n =$ $(1/2)^n =$
- $\lim_{n \to \infty} (-1/2)^n =$ $n \rightarrow \infty$
- $\lim_{n \to \infty} (-1)^n =$
- $\lim_{n \to \infty} (-2)^n =$

The geometric sum

(geometric sum)

$$
\sum_{n=0}^{M} x^{n} = 1 + x + x^{2} + \dots + x^{M} = \frac{1 - x^{M+1}}{1 - x}
$$

Why? Let us write $S=1+x+x^2+...+x^M.$

Note that $x\,S = x + x^2 + ... + x^M + x^{M+1}$ and that the result has most terms in common with our original sum. In fact, the right-hand side is $S-1+x^{M+1}.$ This means that

$$
xS = S - 1 + x^{M+1}.
$$

Solving this for S , we find that $S = \frac{x^{M+1} - 1}{x-1}$ which is equivalent to the above formula.

Example 126. Determine the sum $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{2^M}$. What happens as $M \to \infty$? **Solution.** This is a geometric sum with $x=\frac{1}{2}$. Thus, $\frac{1}{2}$. Thus,

$$
1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{M}} = \frac{1 - \left(\frac{1}{2}\right)^{M+1}}{1 - \frac{1}{2}}.
$$

Note that

$$
\lim_{M \to \infty} \frac{1 - \left(\frac{1}{2}\right)^{M+1}}{1 - \frac{1}{2}} = \frac{1 - 0}{1 - \frac{1}{2}} = 2.
$$