Notes for Lecture 26

Review. The following forms are indeterminate: $\frac{1}{\infty}$, $\frac{1}{0}$, $0 \cdot \infty$, ∞^{0} , 1^{∞} , 0^{0} . By applying ln in the last three cases, we can always write these as $\frac{1}{\infty}$ or $\frac{1}{0}$, so that we can apply L'Hospital.

Example 123. Determine the following limits:

- (a) $\lim_{n \to \infty} \frac{\ln n}{n}$
- (b) $\lim_{n\to\infty} n^{1/n}$
- (c) $\lim_{n \to \infty} \sqrt[n]{\pi^2}$
- (d) $\lim_{n \to \infty} \sqrt[n]{n^2}$

(e)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n$$

Solution.

- (a) $\lim_{n \to \infty} \frac{\ln n}{n} \stackrel{\text{LH}}{=} \lim_{n \to \infty} \frac{1/n}{1} = 0$ We were able to use L'Hospital because the limit was of the form " $\frac{\infty}{\infty}$ ".
- (b) $\lim_{n \to \infty} n^{1/n} = \lim_{n \to \infty} \exp(\ln(n^{1/n})) = \lim_{n \to \infty} \exp\left(\frac{1}{n}\ln(n)\right) = \exp(0) = 1$ Note that we used the limit from the previous part.

Comment. We wrote $\exp(x) = e^x$ simply to avoid using exponents for typographical reasons.

(c)
$$\lim_{n \to \infty} \sqrt[n]{\pi^2} = \lim_{n \to \infty} \pi^{2/n} = \pi^0 = 1$$

(d)
$$\lim_{n \to \infty} \sqrt[n]{n^2} = \lim_{n \to \infty} n^{2/n} = \lim_{n \to \infty} \exp(\ln(n^{2/n})) = \lim_{n \to \infty} \exp\left(\frac{2}{n}\ln(n)\right) = \exp(0) = 1$$

(e) $\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n = \lim_{n \to \infty} \exp\left(\ln\left(\left(1 + \frac{2}{n} \right)^n \right) \right) = \lim_{n \to \infty} \exp\left(n \ln\left(1 + \frac{2}{n} \right) \right) = e^2$

In the final step, we used that $\lim_{n \to \infty} n \ln \left(1 + \frac{2}{n} \right) = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{2}{n} \right)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{1 + \frac{2}{n}} \cdot \left(-\frac{2}{n^2} \right)}{-\frac{1}{n^2}} = 2.$ Comment. More generally, $\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \text{ for any } x.$

The following is a precise definition of the limit of a sequence:

Definition 124.
$$\lim_{n \to \infty} a_n = L$$
 means that:
for every $\varepsilon > 0$ there is a value N such that, for all $n > N$, $|a_n - L| < \varepsilon$.

Here are a few basic facts about limits:

- $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$
- If $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} b_n = B$ then $\lim_{n \to \infty} (a_n + b_n) = A + B$ and $\lim_{n \to \infty} (a_n b_n) = AB$.
- If $\lim_{n \to \infty} a_n = A$ then $\lim_{n \to \infty} f(a_n) = f(A)$ provided that f(x) is continuous at A.

Armin Straub straub@southalabama.edu

Example 125.
$$\lim_{n \to \infty} x^n = \begin{cases} \infty, & \text{if } x > 1, \\ 1, & \text{if } x = 1, \\ 0, & \text{if } -1 < x < 1, \\ \text{does not exist, } \text{if } x \leqslant -1. \end{cases}$$

If you think of a representative case for each situation, then this (important!) example becomes very natural:

- $\lim_{n \to \infty} 2^n =$
- $\lim_{n \to \infty} 1^n =$
- $\lim_{n \to \infty} (1/2)^n =$
- $\lim_{n \to \infty} (-1/2)^n =$
- $\lim_{n \to \infty} (-1)^n =$
- $\lim_{n \to \infty} (-2)^n =$

The geometric sum

(geometric sum)

$$\sum_{n=0}^{M} x^{n} = 1 + x + x^{2} + \ldots + x^{M} = \frac{1 - x^{M+1}}{1 - x}$$

Why? Let us write $S = 1 + x + x^2 + ... + x^M$.

Note that $xS = x + x^2 + ... + x^M + x^{M+1}$ and that the result has most terms in common with our original sum. In fact, the right-hand side is $S - 1 + x^{M+1}$. This means that

$$xS = S - 1 + x^{M+1}$$

Solving this for S, we find that $S = \frac{x^{M+1}-1}{x-1}$ which is equivalent to the above formula.

Example 126. Determine the sum $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^M}$. What happens as $M \to \infty$? Solution. This is a geometric sum with $x = \frac{1}{2}$. Thus,

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^M} = \frac{1 - \left(\frac{1}{2}\right)^{M+1}}{1 - \frac{1}{2}}$$

Note that

$$\lim_{M \to \infty} \frac{1 - \left(\frac{1}{2}\right)^{M+1}}{1 - \frac{1}{2}} = \frac{1 - 0}{1 - \frac{1}{2}} = 2.$$