Notes for Lecture 22 Wed, 10/16/2024

.

Example 111. Evaluate $\int \frac{2x+1}{x^2+6x+9} dx$.

This time, after factoring, partial fractions tells us that

$$
\frac{2x+1}{x^2+6x+9} = \frac{2x+1}{(x+3)^2} = \frac{A}{x+3} + \frac{B}{(x+3)^2}.
$$

- Clearing denominators, $2x + 1 = (x + 3)A + B$. Setting $x = -3$, we find $-5 = B$. There is no "magic" next choice for x so we just set $x = 0$ (any other choice works as well) to get $1 = 3A 5$, which implies $A = 2$.
- Integration now is again straightforward (make sure it is to you!):

$$
\int \frac{2x+1}{x^2+6x+9} dx = \int \frac{2}{x+3} dx + \int \frac{-5}{(x+3)^2} dx = 2\ln|x+3| + \frac{5}{x+3} + C.
$$

Comment. While there is no "magic" next choice for x , we can take derivatives to get rid of B ! Indeed, differentiating $2x + 1 = (x+3)A + B$ gives $2 = A$ directly.

Comment. The form $\frac{A}{x+3} + \frac{B}{(x+3)^2}$ is equivalent to the fo $\frac{B}{(x+3)^2}$ is equivalent to the form $\frac{Cx+D}{(x+3)^2}$. However, the former is m $\frac{(x + D)}{(x + 3)^2}$. However, the former is more useful for integrating.

Improper integrals

Example 112. Determine $\int_0^\infty e^{-x} dx$.

This integral is an example of an **improper integral** of type I (because one of its limits is ∞). Make a sketch!

Solution. Replacing the upper limit with *b*, we have $\int_0^b e^{-x} dx = \left[-e^{-x} \right]$ $\int_{0}^{b} e^{-x} dx = \left[-e^{-x} \right]_{0}^{b} = 1 - e^{-b}.$ $\frac{b}{0} = 1 - e^{-b}.$ Therefore, $\int_0^{\infty} e^{-x} dx = \lim_{b \to \infty} \int_0^b e^{-x} dx = \lim_{b \to \infty} (1 - e^{-b}) = 1$ $b \rightarrow \infty$ J_0 $b \rightarrow \infty$ 1 \int_{a}^{b} $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ 0 $b \rightarrow \infty$ $\int_{e^{-x} dx}^{b} = \lim_{h \to 0} (1 - e^{-b}) = 1.$ $\lim_{b \to \infty} (1 - e^{-b}) = 1.$

Solution. (short version) Once experienced, we can just write $\int_0^\infty e^{-x} dx = \left[-e^{-x} \right]_0^\infty = 0 - (-1) = 1$ with the understanding that we used $\lim_{x \to \infty} e^{-x} = 0.$ $\lim_{x \to \infty} -e^{-x} = 0.$

Example 113. Determine
$$
\int_{1}^{\infty} \frac{1}{x^4} dx
$$
 as well as
$$
\int_{1}^{\infty} \frac{1}{x} dx.
$$

Make a sketch! In the first quadrant, both functions look pretty similar.

Solution.

- (a) $\int_1^{\infty} \frac{1}{x^4} dx = \left[-\frac{1}{3x^3} \right]_1^{\infty} = 0 \left(-\frac{1}{3} \right) = \frac{1}{3}$ $-\frac{1}{3r^3}\Big|_{r}$ = 0 - $\Big(-\frac{1}{3}\Big)$ = $\frac{1}{3}$ when $\left(\frac{1}{3x^3}\right)_1^{\infty} = 0 - \left(-\frac{1}{3}\right) = \frac{1}{3}$ where we used th $\sqrt{2}$ $\left(-\frac{1}{3}\right)$ = $\frac{1}{3}$ where we used that $\frac{1}{3}$ $\left(\frac{1}{3}\right) = \frac{1}{3}$ where we used that $\lim_{x \to \infty} -\frac{1}{3x^3} = 0.$ $\frac{1}{3x^3} = 0.$
- (b) $\int_1^\infty \frac{1}{x} dx = \left[ln|x| \right]_1^\infty$ but $\lim_{x \to \infty} ln|x| = \infty$. We thus say that this $\displaystyle \lim_{x\to \infty} \ln \lvert x\rvert =\infty.$ We thus say that this integral **diverges** (to ∞ in this case).