Spotlight on the exponential function

Euler's constant, the natural base

Euler's constant e = 2.7182818284590452... is unavoidable in Calculus. For instance, starting with only division (which is all we need to define the function 1/x), we obtain

$$\int \frac{1}{x} \mathrm{d}x = \log_e |x| + C.$$

Likewise, e^x is the only exponential whose derivative is itself. More professionally speaking, we have the following characterization of the exponential function:

(exponential function) e^x is the unique solution to the IVP y' = y, y(0) = 1.

Comment. Note that, for instance, $\frac{d}{dx}2^x = \ln(2)2^x$. (This follows from $2^x = e^{\ln(2^x)} = e^{x\ln(2)}$.)

Since $\ln = \log_e$, this means that we cannot avoid the natural base $e \approx 2.718$ even if we try to use another base. The following is a **preview** of a series (infinite sum):

(preview of Taylor series) From the IVP above, it follows that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

This is the **Taylor series** for e^x at x = 0. More on these later!

Important note. We can indeed construct this infinite sum directly from y' = y and y(0) = 1. To see this, observe how each term, when differentiated, produces the term before it. For instance, $\frac{d}{dx}\frac{x^3}{3!} = \frac{x^2}{2!}$.

Example 78. Suppose we have capital 1 and that, annually, we are receiving 1 = 100% interest. How much capital do we have at the end of a year, if $\frac{1}{n}$ interest is paid *n* times a year?

[For instance, n = 12 if we receive monthly interest payments.]

Solution. At the end of the year, we have $\left(1+\frac{1}{n}\right)^n$.

For instance. Here are a few values spelled out:

$$n = 1: \quad \left(1 + \frac{1}{n}\right)^n = 2$$

$$n = 4: \quad \left(1 + \frac{1}{n}\right)^n = 2.4414...$$

$$n = 12: \quad \left(1 + \frac{1}{n}\right)^n = 2.6130...$$

$$n = 100: \quad \left(1 + \frac{1}{n}\right)^n = 2.7048...$$

$$n = 365: \quad \left(1 + \frac{1}{n}\right)^n = 2.7145...$$

$$n = 1000: \quad \left(1 + \frac{1}{n}\right)^n = 2.7169...$$

$$n \to \infty: \quad \left(1 + \frac{1}{n}\right)^n \to e = 2.71828...$$

It is natural to wonder what happens if interest payments are made more and more frequently. As the entry for $n \rightarrow \infty$ shows, if we keep increasing n, then we will get closer and closer to e = 2.7182818284590452... in our bank account after one year.

Challenge. Can you evaluate the limit $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ using your Calculus I skills?

Armin Straub straub@southalabama.edu

Euler's identity

Let's recall some basic facts about **complex numbers**:

- Every complex number can be written as z = x + iy with real x, y.
- Here, the imaginary unit *i* is characterized by solving $x^2 = -1$.

Important observation. The same equation is solved by -i. This means that, algebraically, we cannot distinguish between +i and -i.

• The **conjugate** of z = x + iy is $\overline{z} = x - iy$.

Important comment. Since we cannot algebraically distinguish between $\pm i$, we also cannot distinguish between z and \overline{z} . That's the reason why, in problems involving only real numbers, if a complex number z = x + iy shows up, then its **conjugate** $\overline{z} = x - iy$ has to show up in the same manner. With that in mind, have another look at the examples below.

• The real part of z = x + iy is x and we write $\operatorname{Re}(z) = x$.

Likewise the **imaginary part** is Im(z) = y.

Observe that $\operatorname{Re}(z) = \frac{1}{2}(z+\bar{z})$ as well as $\operatorname{Im}(z) = \frac{1}{2i}(z-\bar{z})$.

Theorem 79.	(Euler's identity)	$e^{ix} = \cos(x)$	$(x) + i\sin(x)$	r)
-------------	--------------------	--------------------	------------------	----

Proof. Observe that both sides are the (unique) solution to the IVP y' = iy, y(0) = 1.

[Check that by computing the derivatives and verifying the initial condition! As we did in class.] $\hfill \Box$

On lots of T-shirts. In particular, with $x = \pi$, we get $e^{\pi i} = -1$ or $e^{i\pi} + 1 = 0$ (which connects the five fundamental constants).

Proof. Observe that both sides are the (unique) solution to the IVP y' = iy, y(0) = 1. [Check that by computing the derivatives and verifying the initial condition! As we did in class.]

Comment. It follows that $\cos(x) = \operatorname{Re}(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix})$ and $\sin(x) = \operatorname{Im}(e^{ix}) = \frac{1}{2i}(e^{ix} - e^{-ix})$. In particular, we see from here that $\cos(x) = \cosh(ix)$ and $i\sin(x) = \sinh(ix)$ (or, equivalently, $\cosh(x) = \cos(ix)$ and $\sinh(x) = -i\sin(ix)$).

Example 80. Where do trig identities like $\sin(2x) = 2\cos(x)\sin(x)$ or $\sin^2(x) = \frac{1 - \cos(2x)}{2}$ (and infinitely many others you have never heard of!) come from?

Short answer: they all come from the simple exponential law $e^{x+y} = e^x e^y$.

Let us illustrate this in the simple case $(e^x)^2 = e^{2x}$. Observe that

$$e^{2ix} = \cos(2x) + i\sin(2x)$$

$$e^{ix}e^{ix} = [\cos(x) + i\sin(x)]^2 = \cos^2(x) - \sin^2(x) + 2i\cos(x)\sin(x)$$

Comparing imaginary parts (the "stuff with an *i*"), we conclude that $\sin(2x) = 2\cos(x)\sin(x)$. Likewise, comparing real parts, we read off $\cos(2x) = \cos^2(x) - \sin^2(x)$.

(Use $\cos^2(x) + \sin^2(x) = 1$ to derive $\sin^2(x) = \frac{1 - \cos(2x)}{2}$ from the last equation.)

Challenge. Can you find a triple-angle trig identity for $\cos(3x)$ and $\sin(3x)$ using $(e^x)^3 = e^{3x}$?

Example 81. Which trig identity hides behind $e^{i(x+y)} = e^{ix}e^{iy}$?

Solution. We observe that

$$e^{i(x+y)} = \cos(x+y) + i\sin(x+y)$$

$$e^{ix}e^{iy} = [\cos(x) + i\sin(x)][\cos(y) + i\sin(y)]$$

$$= \cos(x)\cos(y) - \sin(x)\sin(y) + i(\cos(x)\sin(y) + \sin(x)\cos(y)).$$

Comparing real and imaginary parts, we conclude that

- $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$ and
- $\sin(x+y) = \cos(x)\sin(y) + \sin(x)\cos(y)$.

Example 82. Which trig identity hides behind $e^{ix}e^{-ix} = 1$?

Solution. Note that

$$e^{ix} e^{-ix} = [\cos(x) + i\sin(x)][\cos(-x) + i\sin(-x)] = [\cos(x) + i\sin(x)][\cos(x) - i\sin(x)]$$

= $\cos^2 x + \sin^2 x$.

Hence, $e^{ix}e^{-ix} = 1$ translates into Pythagoras' identity $\cos^2 x + \sin^2 x = 1$.