
Notes for Lecture 14 Mon, 9/23/2024

Spotlight on the exponential function

Euler's constant, the natural base

Euler's constant e = 2.7182818284590452::: is unavoidable in Calculus. For instance, starting
with only division (which is all we need to define the function 1/x), we obtainZ

1
x
dx= logejxj+C:

Likewise, ex is the only exponential whose derivative is itself. More professionally speaking, we
have the following characterization of the exponential function:

(exponential function) ex is the unique solution to the IVP y 0= y, y(0)= 1.

Comment. Note that, for instance, d

dx
2x= ln(2) 2x. (This follows from 2x= eln(2

x)= exln(2).)
Since ln= loge, this means that we cannot avoid the natural base e�2.718 even if we try to use another base.

The following is a preview of a series (infinite sum):

(preview of Taylor series) From the IVP above, it follows that ex=1+x+ x2

2!
+ x3

3!
+ :::.

This is the Taylor series for ex at x=0. More on these later!
Important note. We can indeed construct this infinite sum directly from y 0 = y and y(0) = 1. To see this,

observe how each term, when differentiated, produces the term before it. For instance, d

dx

x3

3!
=
x2

2!
.

Example 78. Suppose we have capital 1 and that, annually, we are receiving 1= 100% interest.
How much capital do we have at the end of a year, if 1

n
interest is paid n times a year?

[For instance, n= 12 if we receive monthly interest payments.]

Solution. At the end of the year, we have
�
1+

1

n

�n
.

For instance. Here are a few values spelled out:

n=1:

�
1+

1
n

�n
=2

n=4:

�
1+

1
n

�n
= 2.4414:::

n= 12:
�
1+

1
n

�n
= 2.6130:::

n= 100:
�
1+

1
n

�n
= 2.7048:::

n= 365:
�
1+

1
n

�n
= 2.7145:::

n= 1000:
�
1+

1
n

�n
= 2.7169:::

n!1:

�
1+

1
n

�n
! e= 2.71828:::

It is natural to wonder what happens if interest payments are made more and more frequently. As the entry for
n!1 shows, if we keep increasing n, then we will get closer and closer to e= 2.7182818284590452::: in our
bank account after one year.

Challenge. Can you evaluate the limit lim
n!1

�
1+

1
n

�n
using your Calculus I skills?
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Euler's identity

Let's recall some basic facts about complex numbers:

� Every complex number can be written as z=x+ iy with real x; y.

� Here, the imaginary unit i is characterized by solving x2=¡1.
Important observation. The same equation is solved by ¡i. This means that, algebraically, we cannot
distinguish between +i and ¡i.

� The conjugate of z=x+ iy is z�=x¡ iy.
Important comment. Since we cannot algebraically distinguish between �i, we also cannot distinguish
between z and z�. That's the reason why, in problems involving only real numbers, if a complex number
z=x+ iy shows up, then its conjugate z�=x¡ iy has to show up in the same manner. With that in
mind, have another look at the examples below.

� The real part of z=x+ iy is x and we write Re(z)=x.

Likewise the imaginary part is Im(z)= y.

Observe that Re(z)= 1

2
(z+ z�) as well as Im(z)= 1

2i
(z¡ z�).

Theorem 79. (Euler's identity) eix= cos(x)+ i sin(x)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

Comment. It follows that cos(x)=Re(eix)= 1

2
(eix+ e¡ix) and sin(x)= Im(eix)= 1

2i
(eix¡ e¡ix).

In particular, we see from here that cos(x) = cosh(ix) and i sin(x) = sinh(ix) (or, equivalently, cosh(x) =
cos(ix) and sinh(x)=¡i sin(ix)).

Example 80. Where do trig identities like sin(2x)=2cos(x)sin(x) or sin2(x)= 1¡ cos(2x)
2

(and
infinitely many others you have never heard of!) come from?

Short answer: they all come from the simple exponential law ex+y= exey.
Let us illustrate this in the simple case (ex)2= e2x. Observe that

e2ix = cos(2x)+ i sin(2x)
eixeix = [cos(x)+ i sin(x)]2= cos2(x)¡ sin2(x)+ 2i cos(x)sin(x):

Comparing imaginary parts (the �stuff with an i�), we conclude that sin(2x)= 2cos(x)sin(x).
Likewise, comparing real parts, we read off cos(2x)= cos2(x)¡ sin2(x).

(Use cos2(x)+ sin2(x)= 1 to derive sin2(x)= 1¡ cos(2x)
2

from the last equation.)

Challenge. Can you find a triple-angle trig identity for cos(3x) and sin(3x) using (ex)3= e3x?

Armin Straub
straub@southalabama.edu

33



Example 81. Which trig identity hides behind ei(x+y)= eixeiy?
Solution. We observe that

ei(x+y) = cos(x+ y)+ i sin(x+ y)

eixeiy = [cos(x)+ i sin(x)][cos(y)+ i sin(y)]
= cos(x)cos(y)¡ sin(x)sin(y)+ i(cos(x)sin(y)+ sin(x)cos(y)):

Comparing real and imaginary parts, we conclude that

� cos(x+ y)= cos(x)cos(y)¡ sin(x)sin(y) and

� sin(x+ y)= cos(x)sin(y)+ sin(x)cos(y).

Example 82. Which trig identity hides behind eix e¡ix=1?
Solution. Note that

eix e¡ix = [cos(x)+ i sin(x)][cos(¡x)+ i sin(¡x)]= [cos(x)+ i sin(x)][cos(x)¡ i sin(x)]
= cos2x+ sin2x:

Hence, eix e¡ix=1 translates into Pythagoras' identity cos2x+ sin2x=1.

Armin Straub
straub@southalabama.edu

34


