Example 65. (review) Solve the initial value problem $\frac{dy}{dx} = xy$, $y(0) = 3$.

 ${\bf Solution.}$ We separate variables to get $\frac{1}{y}\,{\rm d}y\,{=}\,x\,{\rm d}x.$

Integrating both sides, we find $\ln(y) = \frac{1}{2}x^2 + C$. (Since $y=3$ in the initial condition, we don't need to write $\ln|y|$ because we have $y > 0$ around the initial condition.)

We can then find C by using the values $x\!=\!0$, $y\!=\!3$ from the initial condition: $\ln(3)\!=\!\frac{1}{2}\cdot0^2\!+\!C$. So, $C\!=\!\ln(3)$. $\frac{1}{2} \cdot 0^2 + C$. So, $C = \ln(3)$. We now solve $\ln(y) = \frac{1}{2}x^2 + \ln(3)$ for *y* to get $y(x) = e^{\frac{1}{2}x^2 + \ln(3)} = 3e^{\frac{1}{2}x^2}$. .

Alternatively. We could have also first solved for *y* and then determined *C* with the same result.

Logarithms

Review. $\ln(x) = \log_e(x)$ is the inverse function of e^x . In other words, for all real x ,

$$
\ln(e^x) = x.
$$

Similarly, $e^{\ln(x)} \!=\! x$ for all $x \!>\! 0.$

- Likewise. $\log_{a}(x)$ is the inverse function of a^x (where a is called the base).
	- $\frac{1}{dx}$ m(x) = $\frac{1}{x}$ $d_{\text{ln}(x)}$ 1 $\frac{d}{dx}$ ln(*x*) = $\frac{1}{x}$ 1 *x*

Why? Start with $e^{\ln(x)} = x$ and differentiate both sides to get $e^{\ln(x)} \cdot \ln'(x) = 1$. It therefore follows that $\ln'(x) = \frac{1}{\ln(x)} = \frac{1}{x}$. $\frac{1}{e^{\ln(x)}} = \frac{1}{x}.$ $\frac{1}{x}$.

Note. We also have $\frac{d}{dx} \ln(-x) = \frac{1}{x} \cdot (-1)$ $\frac{d}{dx}$ ln($-x$) = $\frac{1}{-x} \cdot (-1) = \frac{1}{x}$ for $x < 0$. Tog $\frac{1}{-x} \cdot (-1) = \frac{1}{x}$ for $x < 0$. Together, this in $\frac{1}{x}$ for $x < 0$. Together, this implies the next entry.

•
$$
\int \frac{1}{x} dx = \ln|x| + C
$$

The following observation allows us to convert other bases to the natural base *e*:

(other bases) $a^x = e^{\ln(a)x}$ and $\log_a(x) = \frac{\ln(x)}{\ln(a)}$. $\ln(a)$.

Why? $a^x=e^{\ln(a)x}$ follows be writing $a^x=e^{\ln(a^x)}=e^{x\ln(a)}$. Can you see how $\log_a(x)=\frac{\ln(x)}{\ln(a)}$ follows from this? $\frac{\ln(x)}{\ln(a)}$ follows from this? Alternatively, the defining property of \log_{a} is that $\log_{a}(a^{x})\,=\,x.$ Because $\ln(a^{x})\,=\,x\ln(a)\,$ we see that $f(x) = \frac{\ln(x)}{\ln(a)}$ also has the property that $f(a^x) = x$.

Example 66. Compute $\frac{d}{d}$ log_a (x) . $\frac{d}{dx}$ log_{*a*} (x) . **Solution.** It follows from $\log_a(x) = \frac{\ln(x)}{\ln(a)}$ that $\frac{d}{dx} \log_a(x) = \frac{1}{x \ln(a)}$ $\frac{\ln(x)}{\ln(a)}$ that $\frac{d}{dx} \log_a(x) = \frac{1}{x \ln(a)}$. $\frac{d}{dx}$ log_{*a*}(*x*) = $\frac{1}{x \ln(a)}$. *x*ln(*a*) .

Example 67. Compute $\frac{d}{dx}2^x$ and $\int 2^x dx$. $\frac{\mathrm{d}}{\mathrm{d}x}2^x$ and $\int 2^x\mathrm{d}x$.

Solution. Write $2^x = e^{\ln(2^x)} = e^{x\ln(2)}$ to see that $\frac{d}{d}2^x = \ln(2) e^{x\ln(2)} =$ $\frac{d}{dx}2^x = \ln(2) \ e^{x\ln(2)} = \ln(2) \ 2^x$ and, likewise, $\int 2^x dx =$ $\frac{1}{\ln(2)}e^{x\ln(2)} + C = \frac{2^x}{\ln(2)} + C.$

Armin Straub Armin Straub $\bf 28\,$ straub@southalabama.edu 28 ... 20 ... 20 ... 20 ... 20 ... 20 ... 20 ... 20 ... 20 ... 20 **Example 68.** Rewrite $2^{\ln(x)}$ as a power of x .

 ${\sf Solution.}$ We use the same ''trick'' as in the previous example (applying $e^{\ln(x)}$ to the expression) to get

$$
2^{\ln(x)} = e^{\ln(2^{\ln(x)})} = e^{\ln(x)\ln(2)} = (e^{\ln(x)})^{\ln(2)} = x^{\ln(2)}.
$$

Alternatively. Since $\ln(x) = \ln(2)\log_2(x)$, we have $2^{\ln(x)} = 2^{\ln(2)\log_2(x)} = (2^{\log_2(x)})^{\ln(2)} = x^{\ln(2)}$. .

Example 69. Determine $\int \frac{2^{\ln(x)}}{x^2} dx$. $\frac{1}{x^2}$ d*x*.

Solution. By the previous example,

$$
\int \frac{2^{\ln(x)}}{x^2} dx = \int x^{\ln(2)} dx = \frac{1}{\ln(2) - 1} x^{\ln(2)} - 1 + C.
$$

Example 70. Determine $\int \frac{(\ln x)^4}{2x} dx$. $\frac{d^2x}{dx^2}dx$.

 ${\bf Solution.} \ \textbf{We substitute}\ u\!=\!\ln\!(x)$ in which case $\mathrm{d} u\!=\!\frac{1}{x}\mathrm{d} x$ (so that the $\frac{1}{x}$ in the integran $\frac{1}{x}$ in the integrand will cancel out), to get

$$
\int \frac{(\ln x)^4}{3x} dx = \frac{1}{3} \int u^4 du = \frac{1}{15} u^5 + C = \frac{1}{15} (\ln x)^4 + C.
$$

Example 71. Determine $\int \frac{\ln(\ln x)}{\ln \ln x} dx$. $\frac{d(\ln x)}{x \ln x} dx$.

 ${\bf Solution.} \ \ \text{We substitute}\ u\!=\!\ln\!(x)$ in which case $\mathrm{d} u\!=\!\frac{1}{x}\mathrm{d} x$ (so that the $\frac{1}{x}$ in the integran $\frac{1}{x}$ in the integrand will cancel out). Since

$$
\int \frac{\ln(\ln x)}{x \ln x} dx = \int \frac{\ln u}{u} du.
$$

In the new integral, we substitute $v\!=\!\ln\!\left(u\right)$ with $\mathrm{d}v\!=\!\frac{1}{u}\mathrm{d}u$ to get

$$
\int \frac{\ln(\ln x)}{x \ln x} dx = \int \frac{\ln u}{u} du = \int v dv = \frac{1}{2}v^2 + C = \frac{1}{2}(\ln u)^2 + C = \frac{1}{2}(\ln(\ln x))^2 + C.
$$

Example 72. Determine $\int_{0}^{2}3^{-x}dx$. 0 $3^{-x}dx$.

 $\mathbf S$ olution. Write $3^{-x}\!=\!e^{\ln(3^{-x})}\!=\!e^{-x\ln(3)}$ to see that

$$
\int_0^2 3^{-x} dx = \left[-\frac{1}{\ln(3)} e^{-x \ln(3)} \right]_0^2 = \left[-\frac{1}{\ln(3)} 3^{-x} \right]_0^2 = \frac{1}{\ln(3)} (1 - 3^{-2}) = \frac{8}{9 \ln(3)}.
$$

Example 73. Determine $\int \frac{\log_3(x)}{x} dx$. $\int_{0}^{3(x)} dx$.

Solution. Since $\log_3(x) = \frac{\ln(x)}{\ln(2)}$, we find that $\int \frac{\log_3(x)}{x}$ $\frac{\ln(x)}{\ln(3)}$, we find that $\int \frac{\log_3(x)}{x} dx = \frac{1}{\ln(3)} \int \frac{1}{x}$ $\frac{a(x)}{x}dx = \frac{1}{\ln(3)} \int \frac{\ln(x)}{x} dx.$ $\frac{d}{dx}dx$.

We now substitute $u = \ln(x)$ in which case $\mathrm{d}u = \frac{1}{x} \mathrm{d}x$ (so that the $\frac{1}{x}$ in the integrar $\frac{1}{x}$ in the integrand will cancel out). Since

$$
\int \frac{\ln(x)}{x} dx = \int u du = \frac{1}{2}u^2 + C = \frac{1}{2}(\ln(x))^2 + C,
$$

we get that $\int \frac{\log_3(x)}{x} dx = \frac{1}{\ln(2)} \int \frac{1}{x^2} dx$ $\frac{a(x)}{x}dx = \frac{1}{\ln(3)} \int \frac{\ln(x)}{x} dx = \frac{1}{2\ln(3)} (\ln$ $\frac{(x)}{x}dx = \frac{1}{2\ln(3)}(\ln(x))^2 + B$ (where B $\frac{1}{2\ln(3)}(\ln(x))^2 + B$ (where $B = \frac{C}{\ln(3)}$ is some constant). $\frac{C}{\ln(3)}$ is some constant).

Armin Straub straub@southalabama.edu ²⁹