
Notes for Lecture 11 Mon, 9/16/2024

Slope fields, or sketching solutions to DEs

The next example illustrates that we can �plot� solutions to differential equations (it does not
matter if we are able to actually solve them).
Comment. This is an important point because �plotting� really means that we can numerically approximate
solutions. For complicated systems of differential equations, such as those used to model fluid flow, this is usually
the best we can do. Nobody can actually solve these equations.

Example 57. Consider the DE y 0=¡x/y.
Let's pick a point, say, (1;2). If a solution y(x) is passing through
that point, then its slope has to be y 0=¡1/2. We therefore draw
a small line through the point (1;2) with slope¡1/2. Continuing
in this fashion for several other points, we obtain the slope field
on the right.

With just a little bit of imagination, we can now anticipate the
solutions to look like (half)circles around the origin. Let us check

whether y(x)= r2¡x2
p

might indeed be a solution!

y 0(x)=
1

2

¡2x
r2¡ x2

p =¡x/y(x). So, yes, we actually found solutions!
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Separation of variables, cont'd

Example 58. Solve the DE y 0=¡x

y
.

Solution. Rewrite the DE as dy

dx
=¡x

y
.

Separate the variables to get ydy=¡xdx (in particular, we are multiplying both sides by dx).
Integrating both sides, we get

R
ydy=

R
¡xdx.

Computing both integrals results in 1

2
y2=¡1

2
x2+C (we combine the two constants of integration into one).

Hence x2+ y2=D (with D=2C).
This is an implicit form of the solutions to the DE. We can make it explicit by solving for y. Doing so, we find
y(x)=� D¡x2

p
(choosing+ gives us the upper half of a circle, while the negative sign gives us the lower half).

Comment. The step above where we break dy

dx
apart and then integrate may sound sketchy!

However, keep in mind that, after we find a solution y(x), even if by sketchy means, we can (and should!) verify
that y(x) is indeed a solution by plugging into the DE. We actually already did that in the previous example!

Example 59. Solve the IVP y 0=¡x

y
, y(0)=¡3.

Comment. Instead of using what we found earlier in Example 58, we start from scratch to better illustrate the
solution process (and how we can use the initial condition right away to determine the value of the constant of
integration).

Solution. We separate variables to get ydy=¡xdx.
Integrating gives 1

2
y2=¡1

2
x2+C, and we use y(0)=¡3 to find 1

2
(¡3)2=0+C so that C =

9

2
.

Hence, x2+ y2=9 is an implicit form of the solution.

Solving for y, we get y=¡ 9¡ x2
p

(note that we have to choose the negative sign so that y(0)=¡3).
Comment. Note that our solution is a local solution, meaning that it is valid (and solves the DE) locally around
x=0 (from the initial condition). However, it is not a global solution because it doesn't make sense outside of
x in the interval [¡3; 3].
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Example 60. Solve the IVP y 0=¡x

y
, y(0)=2.

Solution. Proceeding as in the previous example, we find y(x)= 4¡x2
p

.

Example 61. Solve the initial value problem dy

dx
=xy, y(0)= 3.

Solution. We separate variables to get 1
y
dy=xdx.

Integrating both sides, we find ln(y) = 1

2
x2+ C. (Since y = 3 in the initial condition, we don't need to write

lnjy j because we have y > 0 around the initial condition.)
We can then find C by using the values x=0, y=3 from the initial condition: ln(3)= 1

2
�02+C. So, C= ln(3).

We now solve ln(y)= 1

2
x2+ ln(3) for y to get y(x)= e

1
2
x2+ln(3)

=3e
1
2
x2.

Alternatively. We could have also first solved for y and then determined C with the same result.

Which differential equations can we actually solve using separation of variables?

� A general DE of first order is typically of the form dy

dx
= f(x; y).

For instance, dy
dx
= sin(xy)¡ x2y.

Comment. First order means that only the first derivative of y shows up. The most general form of a
DE of first order is F (x; y; y 0)= 0 but we can usually solve for y 0 to get to the above form.

� The ones we can solve are separable equations, which are of the form dy

dx
= g(x)h(y).

Example. The equation dy

dx
= y¡x (although simple) is not separable.

Example. The equation dy

dx
= ey¡x is separable because we can write it as dy

dx
= ey e¡x.
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A very simple model of population growth

If y(t) is the size of a population (eg. of bacteria) at time t, then the rate of change dy

dt
might,

from biological considerations, be (nearly) proportional to y(t).
More down to earth, this is just saying �for a population 5 times as large, we expect 5 times as many babies�.
Say, we have a population of P = 100 and P 0= 3, meaning that the population changes by 3 individuals per
unit of time. By how much do we expect a population of P = 500 to change? (Think about it for a moment!)
Without further information, we would probably expect the population of P = 500 to change by 5 � 3 = 15
individuals per unit of time, so that P 0=15 in that case. This is what it means for P 0 to be proportional to P .
In formulas, it means that P 0/P is constant or, equivalently, that P 0= kP for a proportionality constant k.
Comment. �Population� might sound more specific than it is. It could also refer to rather different populations
such as amounts of money (finance) or amounts of radioactive material (physics).

For instance, thinking about an amount P (t) of money in a bank account at time t, we would also expect dP
dt

(the money per time that we gain from receiving interest) to be proportional to P (t).

The corresponding mathematical model is described by the DE dy

dt
=ky where k is the constant

of proportionality.
The general solution to this DE is y(t)=Cekt. (Solve it yourself using separation of variables!)
Hence, mathematics tells us that populations satisfying the assumption from biology necessarily exhibit expo-
nential growth.

Example 62. Let y(t) describe the size of a population at time t. Suppose y(0) = 100 and
y(1)= 300. Under the exponential model of population growth, find y(t).

Solution. y(t) solves the DE dy

dt
= ky and therefore is of the form y(t)=Cekt.

We now use the two data points to determine both C and k.

Cek�0=C = 100 and Cek= 100ek= 300. Hence k= ln(3) and y(t)= 100eln(3)t= 100 � 3t.

Example 63. A yeast culture, with initial mass 12 g, is assumed to exhibit exponential growth.
After 10 min, the mass is 15 g. What is the mass after t min?

Solution. Let y(t) be the mass in g after t min. y(t) solves the DE dy

dt
=ky and so is of the form y(t)=Cekt.

We now use that y(0)= 12 and y(10)= 15 to determine both C and k.

Cek�0=C = 12 and Ce10k= 12e10k= 15. Hence k= 1

10
ln
�
5

4

�
and y(t)= 12e

1
10ln

¡ 5
4

�
t
= 12 (5/4)t/10.

Example 64. Just to give an indication of how the modelling can be refined, let us suppose we
want to take limited resources into account, so that there is a maximum sustainable population
size M . This situation could be modelled by the logistic equation

dy
dt

= ky
�
1¡ y

M

�
:

Note that if y is small (compared to M), then 1¡ y

M
� 1, so dy

dt
� ky, and we are back at our

previous model. However, once the population is getting close to M then 1¡ y

M
� 0, so dy

dt
� 0,

which means that the population does not continue to grow.
Main challenge of modeling: A model has to be detailed enough to resemble the real world, yet simple enough
to allow for mathematical analysis.
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