Review. By integrating the product rule, we get

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx.$$

Example 79. $\int x e^x dx =$

- To evaluate the integral, we should choose f(x) = x and $g'(x) = e^x$, because f'(x) becomes easier while g(x) stays the same. Do it!
- If, on the other hand, we decide to choose $f(x) = e^x$ and g'(x) = x, then we obtain

$$\int x e^x \, \mathrm{d}x = \frac{1}{2} x^2 e^x - \int \frac{1}{2} x^2 e^x \, \mathrm{d}x.$$

While certainly correct, we actually ended up with a more difficult integral.

[On the other hand, because we know $\int x e^x dx$, this means we can also do $\int x^2 e^x dx$.]

Example 80.
$$\int_0^1 x^2 e^{2x} dx =$$

After two integrations by parts, your final answer should be $\frac{1}{4}e^2 - \frac{1}{4}$.

Example 81.
$$\int \ln(x) dx =$$

Choose $f(x) = \ln(x)$ and $g'(x) = 1$.

Example 82. Substitute $u = \ln(x)$ in the previous integral. What do you get? After noting that $x = e^u$, you should get $\int \ln(x) dx = \int ue^u du$.

Then, use your answer from Example 79 and compare what you get with Example 81.

Example 83.
$$\int e^x \cos(x) dx =$$

We will need to integrate by parts twice.

First, let $f(x) = e^x$ and $g'(x) = \cos(x)$ (or the other way around; try it!) to get

$$\int e^x \cos(x) \, \mathrm{d}x = e^x \sin(x) - \int e^x \sin(x) \, \mathrm{d}x.$$

The new integral is of the same level of difficulty, so it might seem like we haven't gained anything. But don't give up yet! Instead, integrate by parts again with $f(x) = e^x$ and $g'(x) = \sin(x)$ to arrive at

$$\int e^x \cos(x) \, dx = e^x \sin(x) - \int e^x \sin(x) \, dx = e^x \sin(x) + e^x \cos(x) - \int e^x \cos(x) \, dx$$

Finally, solve for $\int e^x \cos(x) dx!$

Armin Straub straub@southalabama.edu