Sketch of Lecture 12

Review 54. $\int_{2}^{4} \frac{\mathrm{d}x}{x (\ln x)^2} = \int_{\ln(2)}^{\ln(4)} \frac{\mathrm{d}u}{u^2} \text{ after substituting } u = \ln(x).$

Make sure to change the limits when substituting in a definite integral!

Example 55. We want to "lift" a 1600 kg satellite from the ground into orbit, 20, 000 km above the surface.

[These are actually typical values for a GPS satellite.]

• Initially, the satellite is sitting on the surface, about $d_1 = 6371$ km from the center of earth (for gravitation, earth behaves like all its mass is concentrated at its center).

The goal is to bring the satellite to a distance $d_2 = 26,371$ km from the center of earth.

- The mass of the earth is $m_E = 5.973 \cdot 10^{24}$ kg. The mass of our satellite is $m_S = 1600$ kg.
- The physical law of attraction is $F = G \frac{m_S m_E}{d^2}$. It tells us the force of attraction between two masses (here, the satellite and earth) that are at distance d. ($G = 6.674 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$ is the gravitational constant.)

[Note that this force is not constant in our problem: the values of d range from $d = d_1$ to $d = d_2$.]

[Different sources give slightly differing values for m_E and G: these quantities are hard to measure...]

Make a sketch!!

As in Example 52, we think about the moment when the satellite is at distance x from the center of earth.

[You could also let x be the distance from the surface. That works, too, if you adjust things accordingly.]

- At that moment, the gravitational force is $G\frac{m_S m_E}{x^2}$.
- To lift up the satellite by a tiny amount of dx, the amount of work needed is (roughly) $G\frac{m_S m_E}{r^2} dx$ (force times distance).

Hence, the total amount of work is

work =
$$\int_{d_1}^{d_2} G \frac{m_S m_E}{x^2} dx = G m_S m_E \int_{d_1}^{d_2} \frac{dx}{x^2} = G m_S m_E \left[-\frac{1}{x} \right]_{d_1}^{d_2} = G m_S m_E \left(\frac{1}{d_1} - \frac{1}{d_2} \right).$$

Plugging in our values for G, m_S, m_E, d_1, d_2 , we find

work =
$$(6.674 \cdot 10^{-11}) \cdot (1600) \cdot (5.973 \cdot 10^{24}) \left(\frac{1}{6371000} - \frac{1}{26371000}\right) = 7.59 \cdot 10^{10}$$
 joule.

Example 56.

- What happens when we take the **limit** $d_2 \rightarrow \infty$ in the previous example? What does that mean physically?
- How does the previous problem change if the physical law of attraction was $F = G \frac{m_S m_E}{d}$? What happens now when we take the limit $d_2 \rightarrow \infty$?

Example 57. We want to pump water out of a cubic container buried in our garden. The base of the container is 6 ft by 6 ft, and it is 4 ft deep. The top of the container is 10 ft below ground level. How much work is required to pump all the water (144 ft³) from the container to ground level? [Water weighs 62.4 lb/ft³.]

[Note that the reason we again need calculus is that each drop of water needs to be "lifted" by a varying amount (ranging from 10 ft to 14 ft). Our solution will be to consider horizontal slices of the container.]