1 Basic laws for exponentials/logs

- $\quad a^{x} \cdot a^{y}=a^{x+y}$
- $\frac{1}{a^{x}}=a^{-x}$
- $a^{x} \cdot b^{x}=(a b)^{x}$
- $\left(a^{x}\right)^{y}=a^{x y}$
- $\log _{a}\left(a^{x}\right)=x \quad$ and $\quad a^{\log _{a}(r)}=r$
- $\log _{a}(r s)=\log _{a}(r)+\log _{a}(s)$
- $\log _{a}\left(\frac{1}{r}\right)=-\log _{a}(r)$

$2 e^{x}$ and $\ln (x)$

$$
2^{0}=1,3^{0}=1
$$

Observations from plots in GeoGebra:
Slope of 2^{x} at $x=0$ is about 0.693 .
Slope of 3^{x} at $x=0$ is about 1.099.
$e \approx 2.718$ is the "magical" quantity in between.
Slope of e^{x} at $x=0$ is exactly 1 .
The letter e is in honor of Leonhard Euler.

$$
\begin{array}{|c|l|}
\hline \frac{\mathrm{d}}{\mathrm{~d} x} e^{x}=e^{x} & \begin{array}{|l|}
\hline \ln \text { is short for } \log _{e} \\
\text { "natural" logarithm }
\end{array} \begin{array}{|l}
e^{\ln (x)}=x \\
\hline \ln \left(e^{x}\right)=x \\
\hline
\end{array} \mathrm{l} \\
\hline
\end{array}
$$

Example 1. Solve $e^{x}=11$.

Solution. Apply \ln to both sides to get $x=\ln (11)$.
[Because $\ln \left(e^{x}\right)=x$.]

Example 2. Simplify $e^{x \ln (3)}$.

Solution.
$e^{x \ln (3)}=\left(e^{\ln (3)}\right)^{x}=3^{x}$
[Using $\left(a^{r}\right)^{s}=a^{r s}$ backwards.]

Example 3. Simplify $e^{3 \ln (x)}$.

Solution. Same as before with 3 and x swapped:
$e^{3 \ln (x)}=\left(e^{\ln (x)}\right)^{3}=x^{3}$

3 Derivatives of exponentials and logs

(chain rule)

$\frac{\mathrm{d}}{\mathrm{d} x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

(product rule)

$\frac{\mathrm{d}}{\mathrm{d} x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

(exponentials/logarithms) $\frac{\mathrm{d}}{\mathrm{d} x} e^{x}=e^{x}$$\quad \frac{\mathrm{~d}}{\mathrm{~d} x} \ln (x)=\frac{1}{x}$

Example 4. Differentiate $h(x)=e^{x / 4}$.

Solution.

Write $h(x)=f(g(x))$ with $f(x)=e^{x}$ and $g(x)=\frac{x}{4}$.
Then, $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=\frac{1}{4}$.

$$
\begin{aligned}
h^{\prime}(x) & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \quad \text { (chain rule) } \\
& =e^{x / 4} \cdot \frac{1}{4} \\
& =\frac{1}{4} e^{x / 4}
\end{aligned}
$$

Example 5. Differentiate $h(x)=\left(x^{3}+2 x\right) e^{x / 4}$.

Solution.

Write $h(x)=f(x) g(x)$ with $f(x)=x^{3}+2 x$ and $g(x)=e^{x / 4}$.
Then, $f^{\prime}(x)=3 x^{2}+2$ and $g^{\prime}(x)=\frac{1}{4} e^{x / 4}$.

$$
\begin{aligned}
h^{\prime}(x) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \quad \text { (product rule) } \\
& =\left(3 x^{2}+2\right) e^{x / 4}+\left(x^{3}+2 x\right)\left(\frac{1}{4} e^{x / 4}\right) \\
& =\left(\frac{1}{4} x^{3}+3 x^{2}+\frac{1}{2} x+2\right) e^{x / 4}
\end{aligned}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x} e^{x}=e^{x} \quad \frac{\mathrm{~d}}{\mathrm{~d} x} \ln (x)=\frac{1}{x}
$$

Example 6. Differentiate $h(x)=\ln \left(5 x^{2}+7 x\right)$.

Solution.

Write $h(x)=f(g(x))$ with $f(x)=\ln (x)$ and $g(x)=5 x^{2}+7 x$.
Then, $f^{\prime}(x)=\frac{1}{x}$ and $g^{\prime}(x)=10 x+7$.

$$
\begin{aligned}
h^{\prime}(x) & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \quad \text { (chain rule) } \\
& =\frac{1}{5 x^{2}+7 x} \cdot(10 x+7) \\
& =\frac{10 x+7}{5 x^{2}+7 x}
\end{aligned}
$$

Assignments.

- check out Sections 4.1-6 in the book
- do "4.1, 4.2. Exponential functions and $e^{\wedge} x$ " (10 questions)
- do "4.3 On the derivative of e^{\wedge} x." (6 questions)
- do "4.4, 4.5, 4.6. About $\ln (x)$ " (9 questions)
- take "chapter 4 quiz" (7 questions)

All questions taken from the homework.
$5 / 7$ questions ask for a derivative.

4 Online test after next class

- The next online test (Chapter $3 / 4$) is $10 / 28$ to $11 / 1 / 2017$.
- Next class is used for exam prep. No new homework will be added.

