Armin Straub straub@southalabama.edu [No need to show work.]

Problem 1. (4 points) Compute the following derivatives.

Solution.

(a)
$$\frac{d}{dx} \ln(x^3 + 7) = \frac{3x^2}{x^3 + 7}$$

(b) $\frac{d}{dx} [x^4 \tan^{-1}(x)] = 4x^3 \tan^{-1}(x) + \frac{x^4}{x^2 + 1}$

Problem 2. (6 points) Consider the curve $x^3 + 2y^3 = xy$.

- (a) Using implicit differentiation, determine $\frac{dy}{dx}$.
- (b) Determine the line tangent to the curve at the point (1, -1).

Solution.

- (a) Applying $\frac{\mathrm{d}}{\mathrm{d}x}$ to both sides of $x^3 + 2y^3 = xy$, we obtain $3x^2 + 6y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = y + x \frac{\mathrm{d}y}{\mathrm{d}x}$, so that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y 3x^2}{6y^2 x}$.
- (b) The slope of the line tangent to the curve at (1, -1) is $\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right]_{x=1, y=-1} = \left[\frac{y-3x^2}{6y^2-x}\right]_{x=1, y=-1} = -\frac{4}{5}$. Hence, the tangent line has equation $y + 1 = -\frac{4}{5}(x-1)$, which simplifies (optional) to $y = -\frac{4}{5}x - \frac{1}{5}$.

(a)
$$\frac{d}{dx} \ln(x^3 + 7) =$$

(b) $\frac{d}{dx} [x^4 \tan^{-1}(x)] =$

Please print your name:

[Show your work!]

1