Problem 1. (4 points) Compute the following derivatives.
[No need to show work.]
(a) $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(x^{3}+7\right)=\square$
(b) $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{4} \tan ^{-1}(x)\right]=$

Solution.

(a) $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(x^{3}+7\right)=\frac{3 x^{2}}{x^{3}+7}$
(b) $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{4} \tan ^{-1}(x)\right]=4 x^{3} \tan ^{-1}(x)+\frac{x^{4}}{x^{2}+1}$

Problem 2. (6 points) Consider the curve $x^{3}+2 y^{3}=x y$.
[Show your work!]
(a) Using implicit differentiation, determine $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Determine the line tangent to the curve at the point $(1,-1)$.

Solution.

(a) Applying $\frac{\mathrm{d}}{\mathrm{d} x}$ to both sides of $x^{3}+2 y^{3}=x y$, we obtain $3 x^{2}+6 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}$, so that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-3 x^{2}}{6 y^{2}-x}$.
(b) The slope of the line tangent to the curve at $(1,-1)$ is $\left[\frac{\mathrm{d} y}{\mathrm{~d} x}\right]_{x=1, y=-1}=\left[\frac{y-3 x^{2}}{6 y^{2}-x}\right]_{x=1, y=-1}=-\frac{4}{5}$.

Hence, the tangent line has equation $y+1=-\frac{4}{5}(x-1)$, which simplifies (optional) to $y=-\frac{4}{5} x-\frac{1}{5}$.

