Problem 1. (6+2 points)

(a) Using the limit definition, compute $f^{\prime}(x)$ for $f(x)=\frac{1}{x}$.
(b) Determine the line tangent to the graph of $f(x)$ at $x=2$.

Solution.

(a) We need to determine $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=\frac{1}{x}$.

Note that

$$
f(x+h)-f(x)=\frac{1}{x+h}-\frac{1}{x}=\frac{x-(x+h)}{(x+h) x}=\frac{-h}{(x+h) x}
$$

so that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-h}{(x+h) x h}=\lim _{h \rightarrow 0} \frac{-1}{(x+h) x}=\frac{-1}{(x+0) x}=-\frac{1}{x^{2}}
$$

(b) From the first part, the slope of that line is $f^{\prime}(2)=-\frac{1}{4}$. It also passes through $(2, f(2))=\left(2, \frac{1}{2}\right)$. Hence, it has the equation $y-\frac{1}{2}=-\frac{1}{4}(x-2)$, which simplifies to $y=-\frac{1}{4} x+1$.

