Problem 1. (4 points) For what values of a is $f(x)=\left\{\begin{array}{ll}3 x-a, & x<2, \\ a x^{2}+1, & x \geqslant 2,\end{array}\right.$ continuous at every x ?
[Show work!]

Solution. Observe that $f(x)$ is always continuous at every point except, possibly, $x=2$. (Why?!)
In order for $f(x)$ to be continuous at $x=2$, we need $\lim _{x \rightarrow 2} f(x)=f(2)$.

- $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(3 x-a)=6-a$
- $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(a x^{2}+1\right)=4 a+1=f(2)$

Hence, $\lim _{x \rightarrow 2} f(x)=f(2)$ if and only if $6-a=4 a+1$, which happens if and only if $a=1$.
Thus, $f(x)$ is continuous if and only if $a=1$.
Problem 2. ($\mathbf{1}+\mathbf{3}$ points) Let $f(x)$ be a complicated continuous function taking the following values:

x	-3	-2	-1	0	1	2	3
$f(x)$	2	3	1	-1	-3	4	4

(a) What can we conclude about solutions to the equation $f(x)=0$ for x in the interval $[2,3]$?
\square There is exactly one solution in the interval $[2,3]$.
\square There is at least one solution in the interval $[2,3]$.
\square There is no solution in the interval $[2,3]$.
\square There might or might not be a solution in the interval $[2,3]$.
(b) Using the intermediate value theorem, what can we conclude about solutions to the equation $f(x)=0$?

We can guarantee that there is a solution in the following intervals:
[list intervals that are as small as possible]
\square

Solution.

(a) There might or might not be a solution in the interval $[2,3]$.
(b) We can guarantee that there is a solution in the intervals $[-1,0]$ and $[1,2]$.
[If we wanted, we could use open intervals and say that there is a solution in the intervals $(-1,0)$ and $(1,2)$.]

