Good luck!

Problem 1. (4 points) Compute the following indefinite integrals.
(a) $\int\left[x^{4}-2 x^{2}+7\right] \mathrm{d} x=\square$
(b) $\int\left(\frac{1}{\sqrt{x}}+\frac{1}{x^{3}}\right) \mathrm{d} x=$
(c) $\int \frac{1}{1+x^{2}} \mathrm{~d} x=\square$
(d) $\int\left[\sin (4 x)+3 e^{2 x}\right] \mathrm{d} x=$

Problem 2. (2 points) Compute $\int_{1}^{2} x^{2} \mathrm{~d} x$.

Problem 3. (2 points) Compute $\int_{1}^{3} \frac{1}{x} \mathrm{~d} x$. [Show your work!]
\square

Problem 4. (2 points) Compute: $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{e^{2 x}-e^{7 x}}$
\square
Problem 5. (2 points) Compute: $\lim _{x \rightarrow 0^{+}} x^{2} \ln (x)$. [Show your work!]
\square
Problem 6. (2 point) Compute: $\sum_{k=2}^{4} \frac{(-2)^{k}}{k-1}$
\square
Problem 7. (3 points) Let A be the (net) area between the x-axis and $f(x)$ for x in $[1,5]$.
(a) Write down a Riemann sum for A using 3 intervals (of equal size) and midpoints.
(b) Using sigma notation, write down a Riemann sum for A using n intervals (of equal size) and midpoints.

Problem 8. (4 points) Suppose you have 100 m of fencing and want to fence off a rectangular field that borders a straight river (no fence is needed alongside the river). What is the maximum area you can fence off?

Problem 9. (4 points)

(a) Estimate the average value of $f(x)=x^{2}$ on $[0,2]$ using a Riemann sum with 3 intervals and midpoints.
(b) Compute the (exact) average value of $f(x)=x^{2}$ on $[0,2]$.

