Good luck!

Problem 1. (4 points) Compute the following indefinite integrals.
(a) $\int\left[x^{4}-2 x^{2}+7\right] \mathrm{d} x=$
(b) $\int\left(\frac{1}{\sqrt{x}}+\frac{1}{x^{3}}\right) \mathrm{d} x=$
(c) $\int \frac{1}{1+x^{2}} \mathrm{~d} x=$
(d) $\int\left[\sin (4 x)+3 e^{2 x}\right] \mathrm{d} x=$

Solution.

(a) $\int\left[x^{4}-2 x^{2}+7\right] \mathrm{d} x=\frac{x^{5}}{5}-\frac{2}{3} x^{3}+7 x+C$
(b) $\int\left(\frac{1}{\sqrt{x}}+\frac{1}{x^{3}}\right) \mathrm{d} x=2 \sqrt{x}-\frac{1}{2 x^{2}}+C$
(c) $\int \frac{1}{1+x^{2}} \mathrm{~d} x=\arctan (x)+C$
(d) $\int\left[\sin (4 x)+3 e^{2 x}\right] \mathrm{d} x=-\frac{1}{4} \cos (4 x)+\frac{3}{2} e^{2 x}+C$

Problem 2. (2 points) Compute $\int_{1}^{2} x^{2} \mathrm{~d} x$.
Solution. $\int_{1}^{2} x^{2} \mathrm{~d} x=\left[\frac{1}{3} x^{3}\right]_{1}^{2}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$
Problem 3. (2 points) Compute $\int_{1}^{3} \frac{1}{x} \mathrm{~d} x$.
Solution. $\int_{1}^{3} \frac{1}{x} \mathrm{~d} x=[\ln (x)]_{1}^{3}=\ln (3)-\ln (1)=\ln (3)$

Problem 4. (2 points) Compute: $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{e^{2 x}-e^{7 x}}$
[Show your work!]

Solution. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{e^{2 x}-e^{7 x}} \underset{\text { co }}{\stackrel{L H}{0}}=, \lim _{x \rightarrow 0} \frac{3 \cos (3 x)}{2 e^{2 x}-7 e^{7 x}}=\frac{3 \cdot 1}{2-7}=-\frac{3}{5}$

Problem 5. (2 points) Compute: $\lim _{x \rightarrow 0^{+}} x^{2} \ln (x)$.
[Show your work!]

Solution. This limit is of the form " $0 \cdot \infty$ ". To apply L'Hospital, we first rewrite $x^{2} \ln (x)=\frac{\ln (x)}{x^{-2}}$.

$$
\lim _{x \rightarrow 0^{+}} x^{2} \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-2}} \stackrel{\text { LH }}{=} \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}}-\frac{x^{2}}{2}=0
$$

Problem 6. (2 point) Compute: $\sum_{k=2}^{4} \frac{(-2)^{k}}{k-1}$
[Show your work!]

Solution. $\sum_{k=2}^{4} \frac{(-2)^{k}}{k-1}=\frac{4}{1}-\frac{8}{2}+\frac{16}{3}=\frac{16}{3}$

Problem 7. (3 points) Let A be the (net) area between the x-axis and $f(x)$ for x in $[1,5]$.
(a) Write down a Riemann sum for A using 3 intervals (of equal size) and midpoints.
(b) Using sigma notation, write down a Riemann sum for A using n intervals (of equal size) and midpoints.

Solution.

(a) Each interval has length $\frac{5-1}{3}=\frac{4}{3}$. The first interval is $\left[1,1+\frac{4}{3}\right]$, which has midpoint $1+\frac{2}{3}=\frac{5}{3}$.

The 3 midpoints are $\frac{5}{3}, \frac{5}{3}+\frac{4}{3}=3,3+\frac{4}{3}=\frac{13}{3}$ (each is $\frac{4}{3}$ after the previous).
The Riemann sum therefore is $\frac{4}{3}\left[f\left(\frac{5}{3}\right)+f(3)+f\left(\frac{13}{3}\right)\right]$.
(b) Each interval has length $\frac{5-1}{n}=\frac{4}{n}$. The first interval is $\left[1,1+\frac{4}{n}\right]$, which has midpoint $1+\frac{2}{n}$.

The n midpoints are $1+\frac{2}{n}, 1+\frac{2}{n}+\frac{4}{n}, 1+\frac{2}{n}+2 \cdot \frac{4}{n}, \ldots, 1+\frac{2}{n}+(n-1) \cdot \frac{4}{n}$ (each is $\frac{4}{n}$ after the previous).
The Riemann sum therefore is $\frac{4}{n} \sum_{k=0}^{n-1} f\left(1+\frac{2}{n}+k \cdot \frac{4}{n}\right)$.

Problem 8. (4 points) Suppose you have 100 m of fencing and want to fence off a rectangular field that borders a straight river (no fence is needed alongside the river). What is the maximum area you can fence off?

Solution. Let a and b be the lengths of the two sides (in m) of the field, with b the one along the river.
Then the required fencing is $2 a+b$ and the area to be maximized is $A=a \cdot b$. Since $2 a+b=100$ we find $b=100-2 a$ and hence $A=a \cdot(100-2 a)$. To find the maximum of A for a in $[0,50]$ we compute the critical points:

$$
\frac{\mathrm{d} A}{\mathrm{~d} a}=100-4 a=0 \quad \Longrightarrow \quad a=25
$$

Since the maximum clearly does not occur for the endpoints $a=0$ and $a=50$, the maximum must occur at the only critical point $a=25$. The corresponding maximum area is $25 \cdot(100-2 \cdot 25)=1250 \mathrm{~m}^{2}$.

Problem 9. (4 points)

(a) Estimate the average value of $f(x)=x^{2}$ on [0,2] using a Riemann sum with 3 intervals and midpoints.
(b) Compute the (exact) average value of $f(x)=x^{2}$ on $[0,2]$.

Solution.

(a) Each interval has length $\frac{2-0}{3}=\frac{2}{3}$. The first interval is $\left[0, \frac{2}{3}\right]$ and has midpoint $\frac{1}{3}$.

The 3 midpoints therefore are $\frac{1}{3}, \frac{1}{3}+\frac{2}{3}=1,1+\frac{2}{3}=\frac{5}{3}$ (each is $\frac{2}{3}$ after the previous).
The estimate for the average value is

$$
\frac{1}{2-0}\left(\frac{2}{3} f\left(\frac{1}{3}\right)+\frac{2}{3} f(1)+\frac{2}{3} f\left(\frac{5}{3}\right)\right)=\frac{1}{3}\left(f\left(\frac{1}{3}\right)+f(1)+f\left(\frac{5}{3}\right)\right)=\frac{1}{3}\left(\frac{1}{9}+1+\frac{25}{9}\right)=\frac{35}{27} .
$$

(b) The average value is $\frac{1}{2-0} \int_{0}^{2} x^{2} \mathrm{~d} x=\frac{1}{2}\left[\frac{1}{3} x^{3}\right]_{0}^{2}=\frac{1}{2}\left(\frac{8}{3}-0\right)=\frac{4}{3}$.
[For comparison, our estimate was $\frac{35}{27} \approx 1.296$.]

