Good luck!

Problem 1. (5 points) Compute the following derivatives.
(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{7}-2 x^{3}+e^{2}\right]=\square$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\sqrt{x}}=$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(x^{3}-1\right)=$
(d) $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{3} \tan ^{-1}(x)\right]=$ \square
(e) $\frac{\mathrm{d}}{\mathrm{d} x} e^{\cos (4 x)}=$

Problem 4. ($\mathbf{3}+\mathbf{1}+\mathbf{1}$ points) Consider the curve $x^{2}+x y=e^{y}$.
(a) Using implicit differentiation, determine $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Determine the line tangent to the curve at the point $(-1,0)$.
(c) Determine the line normal to the curve at the point $(-1,0)$.

Problem 5. ($\mathbf{3}$ points) Use the graph below to fill in each entry of the grid with positive, negative or zero.

	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
$x=-1$			
$x=0$			
$x=3$			

Problem 6. (2 points) Roughly sketch a differentiable function $f(x)$ with the following property.
(a) $f^{\prime}(0)=0$ but 0 is not a local extremum,
(b) $f^{\prime}(0)<0$ and $f^{\prime \prime}(0)>0$.

Problem 7. ($\mathbf{3}+\mathbf{1}+\mathbf{1}+\mathbf{1}$ points) Consider the function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$.
(a) Determine all local extrema of $f(x)$.
(b) On which (open) intervals is $f(x)$ increasing?
(c) On which (open) intervals is $f(x)$ concave up?
(d) $f(x)$ has an inflection point at $x=\square$.

Problem 8. (3 points) Oil is leaking from a tanker and spreads in a circle whose area increases at a rate of $10 \mathrm{~km}^{2} / \mathrm{h}$. How fast is the radius of the spill increasing after 3 h ?

