MATH 125 — Calculus 1 Tuesday, March 12

Besides the allowed calculator, no notes or tools of any kind are permitted.

Good luck!

Problem 1. (5 points) Compute the following derivatives.

Problem 2. (1 point) By the limit definition, f'(7) =

Problem 3. (2 points) Compute $\frac{d}{dx}(x+4)^x$.

There are 27 points in total.

[No need to show work here.]

Problem 4. (3+1+1 points) Consider the curve $x^2 + xy = e^y$.

- (a) Using implicit differentiation, determine $\frac{dy}{dx}$.
- (b) Determine the line tangent to the curve at the point (-1, 0).
- (c) Determine the line normal to the curve at the point (-1, 0).

Problem 5. (3 points) Use the graph below to fill in each entry of the grid with positive, negative or zero.

	f(x)	f'(x)	f''(x)
x = -1			
x = 0			
x = 3			

Problem 6. (2 points) Roughly sketch a differentiable function f(x) with the following property.

- (a) f'(0) = 0 but 0 is not a local extremum,
- (b) f'(0) < 0 and f''(0) > 0.

Problem 7. (3+1+1+1 points) Consider the function $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1$.

- (a) Determine all local extrema of f(x).
- (b) On which (open) intervals is f(x) increasing?
- (c) On which (open) intervals is f(x) concave up?
- (d) f(x) has an inflection point at x =

Problem 8. (3 points) Oil is leaking from a tanker and spreads in a circle whose area increases at a rate of $10 \text{ km}^2/\text{h}$. How fast is the radius of the spill increasing after 3 h?

(extra scratch paper)