MATH 125 — Calculus 1 Tuesday, March 12

Besides the allowed calculator, no notes or tools of any kind are permitted.

Good luck!

Problem 1. (5 points) Compute the following derivatives.

(b) $\frac{\mathrm{d}}{\mathrm{d}x}\frac{1}{\sqrt{x}} =$ (c) $\frac{\mathrm{d}}{\mathrm{d}x}\ln(x^3-1) =$ (d) $\frac{d}{dx} [x^3 \tan^{-1}(x)] =$ (e) $\frac{\mathrm{d}}{\mathrm{d}x}e^{\cos(4x)} =$

Solution.

(a) $\frac{\mathrm{d}}{\mathrm{d}x} [x^7 - 2x^3 + e^2] = 7x^6 - 6x^2$ (b) $\frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{\sqrt{x}} = -\frac{1}{2}x^{-3/2}$ (c) $\frac{\mathrm{d}}{\mathrm{d}x}\ln(x^3-1) = \frac{3x^2}{x^3-1}$ (d) $\frac{\mathrm{d}}{\mathrm{d}x} [x^3 \tan^{-1}(x)] = 3x^2 \tan^{-1}(x) + \frac{x^3}{x^2 + 1}$ (e) $\frac{\mathrm{d}}{\mathrm{d}x}e^{\cos(4x)} = -4\sin(4x)e^{\cos(4x)}$

Problem 2. (1 point) By the limit definition, f'(7) =

There are 27 points in total.

[No need to show work here.]

1

Please print your name:

Solution.
$$f'(7) = \lim_{h \to 0} \frac{f(7+h) - f(7)}{h}$$

Problem 3. (2 points) Compute $\frac{\mathrm{d}}{\mathrm{d}x}(x+4)^x$.

Solution. We apply logarithmic differentiation: Let $y = (x+4)^x$. Then $\ln(y) = x \ln(x+4)$. Differentiating both sides, we obtain

$$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = \ln(x+4) + \frac{x}{x+4}$$

Solving for $\frac{\mathrm{d}y}{\mathrm{d}x}$, we find $\frac{\mathrm{d}y}{\mathrm{d}x} = (x+4)^x \Big[\ln(x+4) + \frac{x}{x+4} \Big]$.

Problem 4. (3+1+1 points) Consider the curve $x^2 + xy = e^y$.

- (a) Using implicit differentiation, determine $\frac{dy}{dx}$.
- (b) Determine the line tangent to the curve at the point (-1, 0).
- (c) Determine the line normal to the curve at the point (-1, 0).

Solution.

- (a) Applying $\frac{\mathrm{d}}{\mathrm{d}x}$ to both sides of $x^2 + xy = e^y$, we obtain $2x + y + x\frac{\mathrm{d}y}{\mathrm{d}x} = e^y \frac{\mathrm{d}y}{\mathrm{d}x}$, so that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x + y}{e^y x}$.
- (b) The slope of the line tangent to the curve at (-1,0) is $\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right]_{x=-1,y=0} = \left[\frac{2x+y}{e^y-x}\right]_{x=-1,y=0} = \frac{-2+0}{1+1} = -1.$ Hence, the tangent line has equation y = -1(x+1) or, equivalently, y = -x - 1.
- (c) The normal line has slope $-\frac{1}{-1} = 1$ and, hence, equation y = x + 1.

	f(x)	f'(x)	f''(x)
x = -1	+	+	_
x = 0	+	-	_
x = 3	_	+	+

Problem 6. (2 points) Roughly sketch a differentiable function f(x) with the following property.

(a) f'(0) = 0 but 0 is not a local extremum,

(b) f'(0) < 0 and f''(0) > 0.

Solution.

- (a) You can sketch $f(x) = x^3$.
- (b) You can sketch $f(x) = (x 1)^2$ or any other function which is decreasing at x = 0 and concave up.

[Show your work!]

Problem 7. (3+1+1+1 points) Consider the function $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1$.

- (a) Determine all local extrema of f(x).
- (b) On which (open) intervals is f(x) increasing?
- (c) On which (open) intervals is f(x) concave up?
- (d) f(x) has an inflection point at x =

Solution.

(a) Because the derivatives of f(x) are pleasant to compute, we will use the second-derivative test.

Since
$$f'(x) = x^2 - x - 2 = (x+1)(x-2)$$
, the critical points are at $x = -1$ and $x = 2$

f''(x) = 2x - 1

Since f''(2) = 3 > 0, f(x) has a local min at x = 2.

Since f''(-1) = -3 < 0, f(x) has a local max at x = -1.

- (b) f(x) is increasing on $(-\infty, -1)$ and $(2, \infty)$.
- (c) Solving f''(x) > 0, we find that f(x) is concave up on $\left(\frac{1}{2}, \infty\right)$.
- (d) Solving f''(x) = 0, we find that f(x) has an inflection point at $x = \frac{1}{2}$. (We know that there must be an inflection point between the local max (concave down) and the local min (concave up).)

Problem 8. (3 points) Oil is leaking from a tanker and spreads in a circle whose area increases at a rate of $10 \text{ km}^2/\text{h}$. How fast is the radius of the spill increasing after 3 h?

Solution. Let A be the area (in km²) and r the radius (in km) of the circular spill. Then A and r are related by the equation $A = \pi r^2$. It follows that the rates of change, with respect to time t (in h), are related by

$$\frac{\mathrm{d}A}{\mathrm{d}t} = 2\pi r \, \frac{\mathrm{d}r}{\mathrm{d}t}$$

We have $\frac{dA}{dt} = 10$. After t = 3, the area is $A = 3 \cdot 10$, so that the radius is $r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{30}{\pi}}$. It follows that

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{2\pi r} \frac{\mathrm{d}A}{\mathrm{d}t} = \frac{10}{2\pi \sqrt{\frac{30}{\pi}}} = \sqrt{\frac{5}{6\pi}} \approx 0.515 \text{ km/h.}$$

(extra scratch paper)