Good luck!

Problem 1. (5 points) Compute the following derivatives.
(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{7}-2 x^{3}+e^{2}\right]=$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\sqrt{x}}=$ \square
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(x^{3}-1\right)=\square$
(d) $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{3} \tan ^{-1}(x)\right]=$
(e) $\frac{\mathrm{d}}{\mathrm{d} x} e^{\cos (4 x)}=\square$

Solution.

(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{7}-2 x^{3}+e^{2}\right]=7 x^{6}-6 x^{2}$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\sqrt{x}}=-\frac{1}{2} x^{-3 / 2}$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(x^{3}-1\right)=\frac{3 x^{2}}{x^{3}-1}$
(d) $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{3} \tan ^{-1}(x)\right]=3 x^{2} \tan ^{-1}(x)+\frac{x^{3}}{x^{2}+1}$
(e) $\frac{\mathrm{d}}{\mathrm{d} x} e^{\cos (4 x)}=-4 \sin (4 x) e^{\cos (4 x)}$

Problem 2. (1 point) By the limit definition, $f^{\prime}(7)=$

Solution. $f^{\prime}(7)=\lim _{h \rightarrow 0} \frac{f(7+h)-f(7)}{h}$
Problem 3. (2 points) Compute $\frac{\mathrm{d}}{\mathrm{d} x}(x+4)^{x}$.

Solution. We apply logarithmic differentiation: Let $y=(x+4)^{x}$. Then $\ln (y)=x \ln (x+4)$. Differentiating both sides, we obtain

$$
\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ln (x+4)+\frac{x}{x+4}
$$

Solving for $\frac{\mathrm{d} y}{\mathrm{~d} x}$, we find $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+4)^{x}\left[\ln (x+4)+\frac{x}{x+4}\right]$.

Problem 4. ($\mathbf{3}+\mathbf{1}+\mathbf{1}$ points) Consider the curve $x^{2}+x y=e^{y}$.
[Show your work!]
(a) Using implicit differentiation, determine $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Determine the line tangent to the curve at the point $(-1,0)$.
(c) Determine the line normal to the curve at the point $(-1,0)$.

Solution.

(a) Applying $\frac{\mathrm{d}}{\mathrm{d} x}$ to both sides of $x^{2}+x y=e^{y}$, we obtain $2 x+y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=e^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$, so that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+y}{e^{y}-x}$.
(b) The slope of the line tangent to the curve at $(-1,0)$ is $\left[\frac{\mathrm{d} y}{\mathrm{~d} x}\right]_{x=-1, y=0}=\left[\frac{2 x+y}{e^{y}-x}\right]_{x=-1, y=0}=\frac{-2+0}{1+1}=-1$.

Hence, the tangent line has equation $y=-1(x+1)$ or, equivalently, $y=-x-1$.
(c) The normal line has slope $-\frac{1}{-1}=1$ and, hence, equation $y=x+1$.

Problem 5. (3 points) Use the graph below to fill in each entry of the grid with positive, negative or zero.

	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
$x=-1$	+	+	-
$x=0$	+	-	-
$x=3$	-	+	+

Problem 6. (2 points) Roughly sketch a differentiable function $f(x)$ with the following property.
(a) $f^{\prime}(0)=0$ but 0 is not a local extremum,
(b) $f^{\prime}(0)<0$ and $f^{\prime \prime}(0)>0$.

Solution.

(a) You can sketch $f(x)=x^{3}$.
(b) You can sketch $f(x)=(x-1)^{2}$ or any other function which is decreasing at $x=0$ and concave up.

Problem 7. (3+1+1+1 points) Consider the function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$.
(a) Determine all local extrema of $f(x)$.
(b) On which (open) intervals is $f(x)$ increasing?
(c) On which (open) intervals is $f(x)$ concave up?
(d) $f(x)$ has an inflection point at $x=$ \square

Solution.

(a) Because the derivatives of $f(x)$ are pleasant to compute, we will use the second-derivative test.

Since $f^{\prime}(x)=x^{2}-x-2=(x+1)(x-2)$, the critical points are at $x=-1$ and $x=2$.
$f^{\prime \prime}(x)=2 x-1$
Since $f^{\prime \prime}(2)=3>0, f(x)$ has a local min at $x=2$.
Since $f^{\prime \prime}(-1)=-3<0, f(x)$ has a local max at $x=-1$.
(b) $f(x)$ is increasing on $(-\infty,-1)$ and $(2, \infty)$.
(c) Solving $f^{\prime \prime}(x)>0$, we find that $f(x)$ is concave up on $\left(\frac{1}{2}, \infty\right)$.
(d) Solving $f^{\prime \prime}(x)=0$, we find that $f(x)$ has an inflection point at $x=\frac{1}{2}$. (We know that there must be an inflection point between the local max (concave down) and the local min (concave up).)

Problem 8. (3 points) Oil is leaking from a tanker and spreads in a circle whose area increases at a rate of $10 \mathrm{~km}^{2} / \mathrm{h}$. How fast is the radius of the spill increasing after 3 h ?

Solution. Let A be the area (in km^{2}) and r the radius (in km) of the circular spill. Then A and r are related by the equation $A=\pi r^{2}$. It follows that the rates of change, with respect to time t (in h), are related by

$$
\frac{\mathrm{d} A}{\mathrm{~d} t}=2 \pi r \frac{\mathrm{~d} r}{\mathrm{~d} t}
$$

We have $\frac{\mathrm{d} A}{\mathrm{~d} t}=10$. After $t=3$, the area is $A=3 \cdot 10$, so that the radius is $r=\sqrt{\frac{A}{\pi}}=\sqrt{\frac{30}{\pi}}$. It follows that

$$
\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{1}{2 \pi r} \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{10}{2 \pi \sqrt{\frac{30}{\pi}}}=\sqrt{\frac{5}{6 \pi}} \approx 0.515 \mathrm{~km} / \mathrm{h}
$$

