
Practice for Midterm #2 MATH 125 � Calculus 1
Tuesday, March 12

Please print your name:

Besides the allowed calculator, no notes or tools of any kind will be permitted.

� Have another look at the homework, especially those problems that you struggled with.

� Retake Quizzes 4, 5, and 6! (Versions with and without solutions are posted to our course website.)

� Go through the lecture sketches (posted to our course website) and do the problems we did in class (ignore the
solutions until you have solved the problem yourself).

Problem 1. Compute the following derivatives.

(a)
d
dx

[2x4¡ 3 x
p

+7x¡ 42]

(b)
d
dx

1
x7sin(4x+5)

(c)
d
dx

ex
2¡3

(d)
d
dx

[x3ln(x5+ cos(2x))]

(e)
d
dx

sin¡1
�
x2+

1
x

�

(f)
d
dx

1+ (x2¡ 1)tan¡1(3x+2)
p

Solution.

(a)
d
dx

[2x4¡ 3 x
p

+7x¡ 42] = 8x3¡ 3
2
x¡1/2+7

(b)
d
dx

1
x7sin(4x+5)

=¡ 1
(x7sin(4x+5))2

� (7x6sin(4x+5)+x7cos(4x+5) � 4)

(c)
d

dx
ex

2¡3=2xex
2¡3

(d)
d

dx
[x3ln(x5+ cos(2x))] = 3x2ln(x5+ cos(2x))+x3

5x4¡ sin(2x) � 2
x5+ cos(2x)

(e)
d
dx

sin¡1
�
x2+

1
x

�
=

2x¡ 1

x2

1¡
¡
x2+

1

x

�
2

q

(f)
d
dx

1+ (x2¡ 1)tan¡1(3x+2)
p

=
2x tan¡1(3x+2)+ (x2¡ 1) 3

1+ (3x+2)2

2 1+ (x2¡ 1)tan¡1(3x+2)
p

�

Problem 2. Compute the derivatives of the following functions.

(a) (cos(x))x
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(b) xcos(x)

Solution. In both cases, we apply logarithmic di�erentiation.

(a) Let y=(cosx)x. Then ln(y) =x ln(cos(x)). Di�erentiating both sides, we obtain

1
y
dy
dx

= ln(cos(x))+x � 1
cos(x)

� (¡sin(x))

= ln(cos(x))¡x tan(x):

Solving for dy

dx
, we �nd dy

dx
=(cosx)x[ln(cosx)¡x tan(x)].

(b) Let y=xcos(x). Then ln(y)= cos(x)ln(x). Di�erentiating both sides, we obtain

1
y
dy
dx

=¡sin(x)ln(x)+ cos(x) � 1
x
:

Solving for dy

dx
gives dy

dx
=xcos(x)

h
cos(x)
x

¡ sin(x)ln(x)
i
. �

Problem 3. State the limit de�nition of f 0(3).

Solution. f 0(3)= lim
h!0

f(3+h)¡ f(3)
h

�

Problem 4. The Lambert W function is de�ned as the inverse function of f(x)=xex. Determine W 0(x).

Solution. Note that f 0(x)= 1 � ex+x � ex=(x+1)ex.

Di�erentiating x= f(W (x)), we therefore obtain 1= f 0(W (x))W 0(x), so that

W 0(x)=
1

f 0(W (x))
=

1

(W (x)+ 1)eW (x)
=

W (x)
x(W (x)+1)

:

For the �nal equality, we simpli�ed (optional!) using W (x)eW (x)=x. �

Problem 5. Let f(x) =
1

x2+ g(¡x) and suppose that g(¡1)= 2 and g 0(¡1)= 3. Find f 0(1).

Solution. Using the chain rule, f 0(x)=¡2x+ g 0(¡x) � (¡1)
(x2+ g(¡x))2 . Hence, f 0(1)=¡ 2¡ 3

(1+2)2
=
1
9
. �

Problem 6. Consider the curve y2cos(x)+ 2xy3=4.

(a) Using implicit di�erentiation, determine dy

dx
.

(b) Determine the line tangent to the curve at the point (0; 2).

(c) Determine the line normal to the curve at the point (0; 2).
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Solution.

(a) Applying d

dx
to both sides of y2cos(x)+2xy3=4, we obtain 2y cos(x)dy

dx
¡ y2sin(x)+2y3+6xy2dy

dx
=0, so that

dy
dx

=
y2sin(x)¡ 2y3
2y cos(x)+ 6xy2

:

(b) The slope of the line tangent to the curve at (0; 2) is
h
dy

dx

i
x=0;y=2

=
h

y2sin(x)¡ 2y3

2y cos(x)+ 6xy2

i
x=0;y=2

=
0¡ 16
4+0

=¡4.

Hence, the tangent line has equation y¡ 2=¡4(x¡ 0), which simpli�es to y=¡4x+2.

(c) The normal line has slope ¡ 1

¡4 =
1

4
and, thus, equation y¡ 2= 1

4
(x¡ 0), which simpli�es to y= 1

4
x+2.

Here is a sketch of the curve and the lines:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

�

Problem 7. Consider the curve xy+ y2=1. Determine dy

dx
and d2y

dx2
.

Solution. Applying d

dx
to both sides of xy+ y2=1, we obtain y+x

dy

dx
+2y

dy

dx
=0,

so that (x+2y)
dy

dx
=¡y and, therefore, dy

dx
=

¡y
x+2y

. Consequently,

d2y
dx2

=
d
dx

¡y
x+2y

=
¡dy

dx
� (x+2y)+ y �

�
1+2

dy

dx

�
(x+2y)2

=
y+ y �

�
1¡ 2y

x+2y

�
(x+2y)2

=
2y(x+ y)
(x+2y)3

=
2

(x+2y)3
:

In the �nal step, we simpli�ed using y(x+ y) =xy+ y2=1.

Comment. In these kinds of problems, alternative approaches can lead to solutions that look rather di�erent (but,
in the end, are equivalent). For instance, here, we could note that x= 1¡ y2

y
=

1

y
¡ y. Hence, dx

dy
=¡ 1

y2
¡ 1, so that

dy

dx
=

1

¡ 1

y2
¡ 1

=¡ y2

y2+1
.

[Looks di�erent than our earlier dy

dx
=

¡y
x+2y

but notice that, indeed, ¡y
x+2y

=
¡y

1

y
¡ y+2y

=
¡y2

1+ y2
.]

By the chain rule, d
2y

dx2
=

d

dx

h
¡ y2

y2+1

i
=

d

dy

h
¡ y2

y2+1

i
dy

dx
=¡ 2y

(y2+1)2
dy

dx
=

2y

(y2+1)2
y2

y2+1
=

2y3

(y2+1)3
. �
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Problem 8. Use the graph below to �ll in each entry of the grid with positive, negative or zero.

f(x)

-2 -1 1 2 3 4

-4

-2

2

4
f(x) f 0(x) f 00(x)

x=¡1 + + ¡

x=2 ¡ ¡ +

x=3 ¡ + +

Problem 9. The plot to the right shows the function f(x).

(a) What are the critical points of f(x)?

(b) Mark (roughly) the in�ection points of f(x) in the plot.

(c) g(x) is a function such that g 0(x) = f(x). Does g(x) have a
local extremum at x=0?

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Solution.

(a) The critical points of f(x) are at x=¡1, x=0 and x=1.

(b)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(c) By the �rst-derivative test, g(x) has a local extremum at x=0 if g 0(0)=0 and g 0(x) changes sign at x=0.

Here, g 0(x)= f(x) changes from > 0 to < 0 at x=0, so that g(x) has a local maximum at x=0. �

Problem 10. Roughly sketch a di�erentiable function f(x) with the following property.

(a) f 0(0)= 0 but 0 is not a local extremum, (b) f 0(0)> 0 and f 00(0)< 0.

Solution.

(a) You can sketch f(x) =x3.

(b) You can sketch f(x) =¡(x¡ 1)2 or any other function which is increasing at x=0 and concave down. �
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Problem 11. The plot to the right shows a function f(x) as well as
f 0(x) and f 00(x).

Which is which? Label the graphs accordingly.

-2 -1 1 2

-15

-10

-5

5

10

15

Solution. The blue curve is f(x), the orange curve is f 0(x), and green curve is f 00(x). �

Problem 12. The �rst and second derivatives of the function f(x) have the following values:

x<¡2 x=¡2 ¡2<x<¡1 x=¡1 ¡1<x< 0 x=0 0<x< 1 x=1 1<x< 3 x=3 x> 3
f 0(x) ¡ 0 + + + 0 + + + 0 ¡
f 00(x) + + + 0 ¡ 0 + 0 ¡ 0 ¡

Determine the location of all local minima, local maxima and in�ection points.

Solution. In summary, we have a local min at x=¡2, a local max at x=3, and in�ection points at x=¡1, x=0, x=1.

The reasoning is as follows:

Local extrema can only occur when f 0(x) = 0. Hence, the candidates are x=¡2, x= 0 and x= 3. If f 0 is changing
from + to ¡, then we have a local max. Likewise, if f 0 is changing from ¡ to +, then we have a local min.

� At x=¡2: since f 0 is changing from ¡ to +, there is a local min at x=¡2.

(Alternatively, we could have noticed that f 00(¡2)> 0, which implies that this is a local min.)

� At x=0: since the sign of f 0 is not changing, we do not have a local extremum at x=0.

(Since f 00(0)=0, the second-derivative test would not help us decide whether this is a local extremum or not.)

� At x=3: since f 0 is changing from + to ¡, there is a local max at x=3.

(Since f 00(0)=0, the second-derivative test would not help us decide whether this is a local extremum or not.)

In�ection points can only occur when f 00(x)=0. Hence, the candidates are x=¡1, x=0, x=1 and x=3. Recall that
f(x) has an in�ection point at x= a if f 00 is changing sign at x= a (i.e. concavity is changing).

� At x=¡1: since f 00 is changing from + to ¡, there is an in�ection point at x=¡1.

� At x=0: since f 00 is changing from ¡ to +, there is an in�ection point at x=0.

� At x=1: since f 00 is changing from + to ¡, there is an in�ection point at x=1.

� At x=3: since the sign of f 00 is not changing (f is concave down before and after), we do not have an in�ection
point at x=3. �

Problem 13. Determine all local extrema of the function f(x) = x4 ¡ 4

3
x3 ¡ 4x2 + 24x + 1. You may use that the

critical points are at x=¡1, x=0 and x=2.

Solution. Since the derivatives of f(x) are pleasant to compute, we will use the second-derivative test.

f 0(x)= 4x3¡ 4x2¡ 8x+ 24
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f 00(x)= 12x2¡ 8x¡ 8

Since f 00(¡1)= 12+8¡ 8= 12> 0, f(x) has a local min at x=¡1.

Since f 00(0)=¡8< 0, f(x) has a local max at x=0.

Since f 00(2)= 48¡ 16¡ 8= 24> 0, f(x) has a local min at x=2.

Alternative. Since we have a complete list of critical points (i.e. there is no other x for which f 0(x) = 0), we can
also conveniently use the �rst-derivative test. However, since the second derivative is so easy to compute, the second-
derivative test should be our �rst choice. �

Problem 14. Consider the function s(t)= 2t3¡ 9t2+ 12t.

(a) What is the maximal value s(t) attained on the interval
�
0;

1

2

�
?

(b) Determine all local extrema of s(t).

(c) On which intervals is s(t) increasing?

(d) On which intervals is s(t) concave up?

(e) Determine all in�ection points of s(t).

Solution.

(a) s0(t)= 6t2¡ 18t+ 12=6(t2¡ 3t+2)=6(t¡ 1)(t¡ 2)

Hence, the critical points of s(t) are at t=1 and t=2.

However, both are not in the interval
�
0;

1

2

�
. Hence, the only candidates for the absolute maximum of s(t) on�

0;
1

2

�
is at the endpoints.

Since s(0)=0 and s
¡ 1
2

�
=

1

4
¡ 9

4
+6=4, we conclude that the maximal value on

�
0;

1

2

�
is s

¡ 1
2

�
=4.

(b) We already know that the local extrema can only occur at the critical values t=1 and t=2. Since the derivatives
of s(t) are so pleasant to compute, we will use the second-derivative test.

s00(t)= 12t¡ 18

s00(1)=¡6< 0 implies that s(t) has a local max at 1.

s00(2)=6> 0 implies that s(t) has a local min at 2.

(c) Note that a function is increasing before a local max and decreasing after (and, likewise, decreasing before a
local min and increasing after). Since t=1 and t=2 are the only points where s(t) can change from increasing
to decreasing (and the other way around), we conclude that s(t) is increasing on (¡1; 1) and (2;1).

(d) s(t) is concave up when s00(t)> 0. Since s00(t) = 12t¡ 18=6(2t¡ 3) this is the case for t in
¡ 3
2
;1

�
.

(e) By the previous part, s(t) has an in�ection at t= 3

2
. �

Problem 15. Consider f(x)= (x2¡ 2)e2x.

(a) Determine all local and absolute extrema of f(x) on the interval [¡3; 3].

(b) Determine the in�ection points of f(x).

Solution.

(a) f 0(x)= 2(x¡ 1)(x+2)e2x
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Solving f 0(x)= 0, we �nd that the only critical points are at x=¡2 and x=1.

The extreme values can only occur at ¡2, 1 (critical points) or at ¡3, 3 (endpoints).

x ¡3 ¡2 1 3

f(x) 7e¡6� 0.01735 % 2e¡4� 0.03663 & ¡e2�¡7.389 % 7e6� 2824
f 0(x) + 0 ¡ 0 +

In conclusion:

� There is an absolute minimum of ¡e2 at x=1 and an absolute maximum of 7e6 at x=3.

� There is an additional local minimum of 7e¡6 at x=¡3 and a local maximum of 2e¡4 at x=¡2.

Comment. We could also use the second-derivative test to determine that there is a local max at ¡2 (this
follows from f 00(¡2)=¡6e¡4�¡0.1099<0) and a local min at x=1 (this follows from f 00(1)=6e2�44.33>0).
However, since we are looking at all critical points (and need to check function values at the endpoints as well),
it is less work to apply the �rst-derivative test.

(b) Recall that an in�ection point is a local extremum of f 0(x).

f 00(x)= 2(2x2+4x¡ 3)e2x

Solving f 00(x)=0, we �nd that x= ¡2� 10
p

2
(x�¡2.581 and x� 0.581). These are the critical points of f 0(x)

and hence the only candidates for in�ection points. We still need to check that concavity of f(x) (i.e. the sign
of f 00(x)) is changing at these points. Since f 00=/ 0 for all other points, we can do so by checking the sign of
f 00(x) at, say, x=¡3, at x=¡2 and x=1. We �nd f 00(¡3)= 6e¡6> 0, f 00(¡2)< 0 (because x=¡2 is a local
max), and f 00(1)> 0 (because x=1 is a local min), so that the sign is indeed changing.

In conclusion, we have in�ection points at x= ¡2� 10
p

2
.

Alternatively (advanced). There must be an in�ection point between the local max at x=¡2 (concave down)
and the local min at x = 1 (concave up). Also, we can see that f(x) has the x-axis as horizontal asymptote
and that it approaches the x-axis from above as x!¡1. Hence, for very negative x, f(x) must be concave
up. Therefore, there must be a second in�ection point before x=¡2 (where f(x) is concave down). Combined,
there must be at least two in�ection points, so that both candidates must indeed be in�ection points.

A plot. Just for visual con�rmation of our computations, here is a plot of f(x). Note how, in the �rst plot, the
situation at x=¡2 is not really visible. The second plot addresses that point.

-4 -3 -2 -1 1 2 3 4

-7
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-5

-4
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-2

-1

-4 -3 -2 -1 1

-0.2

-0.1

0.1

0.2

�

Problem 16. The volume of a cube is increasing at a rate of 10 cm3/min. How fast is the surface area increasing
when the length of an edge is 40 cm?

Solution. Let a be the edge length (in cm) of the cube.
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Then V = a3 and S=6a2, so that S=6V 2/3.

It follows that dS

dt
=6 � 2

3
�V ¡1/3 � dV

dt
=

4

a

dV

dt
. When a= 40, we therefore have dS

dt
=

4

40 � 10=1 cm2/min . �

Problem 17. Oil is leaking from a tanker and spreads in a circle whose area increases at a rate of 5 km2/h. How fast
is the radius of the spill increasing after 4 h?

Solution. Let A be the area (in km2) and r the radius (in km) of the circular spill. Then A and r are related by the
equation A=�r2. It follows that the rates of change, with respect to time t (in h), are related by

dA
dt

=2�r
dr
dt
:

We have dA

dt
=5. After t=4, the area is A=4 � 5, so that the radius is r= A

�

q
=

20
�

q
. It follows that

dr
dt
=

1
2�r

dA
dt

=
5

2�
20
�

q =
1
4

5
�

r
� 0.3154 km/h: �
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