Good luck!

Problem 1. (6 points) Determine the following limits (or state that they don't exist).
(a) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}=\square$
(b) $\lim _{x \rightarrow \infty} \frac{\sin (3 x)}{7 x}=\square$
(c) $\lim _{x \rightarrow 1} \frac{\sin (3 x)}{7 x}=$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x}+7 x^{2}-2}{3 x^{2}+5}=$
(e) If $\lim _{x \rightarrow a} f(x)=3$ and $\lim _{x \rightarrow a} g(x)=5$, then $\lim _{x \rightarrow a}\left[f(x)^{2}-3 g(x)\right]=$ \square
(f) If $\lim _{x \rightarrow 1} f(x)=2, \lim _{x \rightarrow 1} g(x)=3$ and $\lim _{x \rightarrow 2} g(x)=4$, then $\lim _{x \rightarrow 1} g(f(x))=\square$.

Problem 2. (2 points) Simplify! $e^{2 \ln (x)-\ln (3 y)}=$

Problem 3. (2 points) Let $f(x)$ be a complicated continuous function taking the following values:

x	-3	-2	-1	0	1	2	3
$f(x)$	2	3	1	-1	-3	4	4

How many solutions to the equation $f(x)=3$ can we guarantee? \square

Problem 4. (3 points) Let $f(x)$ be the function graphed below. Fill in the blanks.

(a) $f(x)$ is continuous everywhere except at the following values of x : \square
(b) $f(x)$ has a removable discontinuity at the following values of x :
(c) $\lim _{x \rightarrow 2^{+}} f(x)=$ \square

Problem 5. (4 points) For what values of a is $f(x)=\left\{\begin{array}{ll}x^{2}-a, & x<1, \\ a \ln (x)+2, & x \geqslant 1,\end{array}\right.$ continuous at every x ?

Problem 7. (4 points) Determine $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}+1$.

