Good luck!

Problem 1. (6 points) Determine the following limits (or state that they don't exist).
[No need to show work here.]
(a) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}=\square$
(b) $\lim _{x \rightarrow \infty} \frac{\sin (3 x)}{7 x}=$
(c) $\lim _{x \rightarrow 1} \frac{\sin (3 x)}{7 x}=\square$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x}+7 x^{2}-2}{3 x^{2}+5}=$
(e) If $\lim _{x \rightarrow a} f(x)=3$ and $\lim _{x \rightarrow a} g(x)=5$, then $\lim _{x \rightarrow a}\left[f(x)^{2}-3 g(x)\right]=$ \square
(f) If $\lim _{x \rightarrow 1} f(x)=2, \lim _{x \rightarrow 1} g(x)=3$ and $\lim _{x \rightarrow 2} g(x)=4$, then $\lim _{x \rightarrow 1} g(f(x))=\square$.

Solution.

(a) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}=\frac{3}{7}$
(b) $\lim _{x \rightarrow \infty} \frac{\sin (3 x)}{7 x}=0$
(c) $\lim _{x \rightarrow 1} \frac{\sin (3 x)}{7 x}=\frac{\sin (3)}{7}$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x}+7 x^{2}-2}{3 x^{2}+5}=\frac{7}{3}$
(e) If $\lim _{x \rightarrow a} f(x)=3$ and $\lim _{x \rightarrow a} g(x)=5$, then $\lim _{x \rightarrow a}\left[f(x)^{2}-3 g(x)\right]=3^{2}-3 \cdot 5=-6$.
(f) Note that $f(x) \rightarrow 2$ as $x \rightarrow 1$, so that $\lim _{x \rightarrow 1} g(f(x))=\lim _{y \rightarrow 2} g(y)=4$.

Problem 2. (2 points) Simplify! $e^{2 \ln (x)-\ln (3 y)}=$

Solution. $e^{2 \ln (x)-\ln (3 y)}=e^{\ln \left(\frac{x^{2}}{3 y}\right)}=\frac{x^{2}}{3 y}$

Problem 3. (2 points) Let $f(x)$ be a complicated continuous function taking the following values:

x	-3	-2	-1	0	1	2	3
$f(x)$	2	3	1	-1	-3	4	4

How many solutions to the equation $f(x)=3$ can we guarantee?

Solution. By the intermediate value theorem, there must be a solution x to $f(x)=3$ in the interval [1, 2]. We also know that $x=-2$ is a solution. We can therefore guarantee 2 solutions.

Problem 4. (3 points) Let $f(x)$ be the function graphed below. Fill in the blanks.

(a) $f(x)$ is continuous everywhere except at the following values of x : \square
(b) $f(x)$ has a removable discontinuity at the following values of x :
(c) $\lim _{x \rightarrow 2^{+}} f(x)=\square$

Solution.

(a) $f(x)$ is continuous everywhere except at $x=1$ and $x=2$.
(b) $f(x)$ has a removable discontinuity at $x=1$.
(c) $\lim _{x \rightarrow 2^{+}} f(x)=2$

Problem 5. (4 points) For what values of a is $f(x)=\left\{\begin{array}{ll}x^{2}-a, & x<1, \\ a \ln (x)+2, & x \geqslant 1,\end{array}\right.$ continuous at every x ? [Show work!]

Solution. Observe that $f(x)$ is always continuous at every point except, possibly, $x=1$.
In order for $f(x)$ to be continuous at $x=1$, we need $\lim _{x \rightarrow 1} f(x)=f(1)$.

- $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}-a\right)=1-a$
- $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(a \ln (x)+2)=a \ln (1)+2=2=f(1)$

Hence, $\lim _{x \rightarrow 1} f(x)=f(1)$ if and only if $1-a=2$, which happens if and only if $a=-1$.
Thus, $f(x)$ is continuous if and only if $a=-1$.

Problem 6. (4 points) Determine $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+7 x}\right)$.

Solution. We have

$$
x-\sqrt{x^{2}+7 x}=\frac{\left(x-\sqrt{x^{2}+7 x}\right)\left(x+\sqrt{x^{2}+7 x}\right)}{x+\sqrt{x^{2}+7 x}}=\frac{-7 x}{x+\sqrt{x^{2}+7 x}}=\frac{-7}{1+\sqrt{1+\frac{7}{x}}} \xrightarrow{x \rightarrow \infty}-\frac{7}{1+\sqrt{1+0}}=-\frac{7}{2} .
$$

Problem 7. (4 points) Determine $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}+1$.
[Show work!]

Solution. Since $f(x+h)=(x+h)^{2}+1=x^{2}+2 h x+h^{2}+1$, we have

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 h x+h^{2}+1\right)-\left(x^{2}+1\right)}{h}=\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x .
$$

