Theorem 144. (Fundamental Theorem of Calculus) Let $f(x)$ be continuous on $[a, b]$.
(1) Then $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$ is an antiderivative of $f(x)$. In other words,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} f(t) \mathrm{d} t=f(x) .
$$

(2) If $F(x)$ is an antiderivative of $f(x)$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) .
$$

Comment. The "first part" is saying that first integrating and then differentiating doesn't do anything. Writing the "second part" as $\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a)$, we can interpret it as saying that first differentiating (which kills constants!) and then integrating doesn't do anything up to a constant. Taken together, derivatives and integrals are essentially inverse operations: one undoes the other.
Proof?
(1) Define $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$. Then:

Make a sketch!

$$
\begin{aligned}
F^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\int_{a}^{x+h} f(t) \mathrm{d} t-\int_{a}^{x} f(t) \mathrm{d} t\right] \\
& =\lim _{h \rightarrow 0} \underbrace{\frac{1}{h} \int_{x}^{x+h} f(t) \mathrm{d} t}_{\text {average of } f \text { on }[x, x+h]}=f(x)
\end{aligned}
$$

(2) Suppose that F is an antiderivative of f. By the first part, any such antiderivative is of the form $F(x)=\int_{a}^{x} f(t) \mathrm{d} t+C$. It then follows that

$$
F(b)-F(a)=\left(\int_{a}^{b} f(t) \mathrm{d} t+C\right)-\left(\int_{a}^{a} f(t) \mathrm{d} t+C\right)=\int_{a}^{b} f(t) \mathrm{d} t
$$

Example 145. Compute $\frac{\mathrm{d}}{\mathrm{d} x} \int_{\sqrt{x}}^{\cos (2 x)} \sin \left(t^{2}\right) \mathrm{d} t$.
Solution. For any a, we have: $\frac{\mathrm{d}}{\mathrm{d} x} \int_{\sqrt{x}}^{\cos (2 x)} \sin \left(t^{2}\right) \mathrm{d} t=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{\sqrt{x}}^{a} \sin \left(t^{2}\right) \mathrm{d} t+\int_{a}^{\cos (2 x)} \sin \left(t^{2}\right) \mathrm{d} t\right]$
$=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{a}^{\cos (2 x)} \sin \left(t^{2}\right) \mathrm{d} t-\int_{a}^{\sqrt{x}} \sin \left(t^{2}\right) \mathrm{d} t\right]=-2 \sin (2 x) \sin \left(\cos ^{2}(2 x)\right)-\frac{\sin (x)}{2 \sqrt{x}}$

Example 146. Find the total area between the x-axis and $f(x)=-x^{2}-2 x$ for $-3 \leqslant x \leqslant 2$.
Solution. Make a sketch! The crucial thing to realize that we are asked for total area and not net area.
We therefore need to split up the interval $[-3,2]$ into pieces according to where y is positive and negative. Since $f(x)=-x(x+2)$, we split $[-3,2]$ into $[-3,-2]$ (where $f(x)<0),[-2,0]$ (where $f(x)>0$), and $[0,2]$ (where $f(x)<0$).

$$
\begin{aligned}
\text { total area }=\int_{-3}^{2}|f(x)| \mathrm{d} x & =\int_{-3}^{-2}|f(x)| \mathrm{d} x+\int_{-2}^{0}|f(x)| \mathrm{d} x+\int_{0}^{2}|f(x)| \mathrm{d} x \\
& =-\int_{-3}^{-2} f(x) \mathrm{d} x+\int_{-2}^{0} f(x) \mathrm{d} x-\int_{0}^{2} f(x) \mathrm{d} x \\
& =-\left[-\frac{1}{3} x^{3}-x^{2}\right]_{-3}^{-2}+\left[-\frac{1}{3} x^{3}-x^{2}\right]_{-2}^{0}-\left[-\frac{1}{3} x^{3}-x^{2}\right]_{0}^{2} \\
& =\frac{4}{3}+\frac{4}{3}+\frac{20}{3}=\frac{28}{3}
\end{aligned}
$$

