The following rules are satisfied by definite integrals.
Think about each rule and make sure that it makes sense using the net area interpretation of the integral.
(1) $\int_{b}^{a} f(x) \mathrm{d} x=-\int_{a}^{b} f(x) \mathrm{d} x$
(2) $\int_{a}^{a} f(x) \mathrm{d} x=0$
(3) $\int_{a}^{b} k f(x) \mathrm{d} x=k \int_{a}^{b} f(x) \mathrm{d} x$
(4) $\int_{a}^{b}[f(x) \pm g(x)] \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x \pm \int_{a}^{b} g(x) \mathrm{d} x$
(5) $\int_{a}^{b} f(x) \mathrm{d} x+\int_{b}^{c} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x$
(6) min of f on $[a, b] \leqslant \underbrace{\left.\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leqslant \max \text { of } f \text { on }[a, b], ~\right], ~}_{\text {average of } f \text { on }[a, b]}$
(7) If $f(x) \geqslant g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \mathrm{d} x \geqslant \int_{a}^{b} g(x) \mathrm{d} x$.

Example 140. Suppose that

$$
\int_{1}^{3} f(x) \mathrm{d} x=4, \quad \int_{2}^{3} f(x) \mathrm{d} x=5, \quad \int_{1}^{3} g(x) \mathrm{d} x=3 .
$$

(a) Determine $\int_{1}^{2} f(x) \mathrm{d} x$.
(b) Determine $\int_{1}^{3}[f(x)+g(x)] \mathrm{d} x$ and $\int_{1}^{3}[7 f(x)-g(x)] \mathrm{d} x$. What about $\int_{1}^{3} f(x) g(x) \mathrm{d} x$?
(c) Determine $\int_{3}^{1} \sqrt{5} f(x) \mathrm{d} x$.

Solution.

(a) $\int_{1}^{2} f(x) \mathrm{d} x=\int_{1}^{3} f(x) \mathrm{d} x-\int_{2}^{3} f(x) \mathrm{d} x=4-5=-1$
(b) $\int_{1}^{3}[f(x)+g(x)] \mathrm{d} x=\int_{1}^{3} f(x) \mathrm{d} x+\int_{1}^{3} g(x) \mathrm{d} x=4+3=7$
$\int_{1}^{3}[7 f(x)-g(x)] \mathrm{d} x=7 \int_{1}^{3} f(x) \mathrm{d} x-\int_{1}^{3} g(x) \mathrm{d} x=7 \cdot 4-3=25$
From the given information, we cannot determine $\int_{1}^{3} f(x) g(x) \mathrm{d} x$. Explain why!
(c) $\int_{3}^{1} \sqrt{5} f(x) \mathrm{d} x=-\sqrt{5} \int_{1}^{3} f(x) \mathrm{d} x=-4 \sqrt{5}$

Example 141. Compute $\int_{0}^{2} \sqrt{4-x^{2}} \mathrm{~d} x$.
Solution. Make a sketch! The area is the quarter of a circle with radius 2 , which we know equals $\frac{1}{4} \cdot \pi \cdot 2^{2}=\pi$. Hence, $\int_{0}^{2} \sqrt{4-x^{2}} \mathrm{~d} x=\pi$.
Comment. Make sure to realize that it is not at all obvious what an antiderivative $F(x)$ of $f(x)=\sqrt{4-x^{2}}$ should be. In Calculus II you will learn techniques to find $F(x)=\frac{1}{2} x \sqrt{4-x^{2}}+2 \arcsin \left(\frac{x}{2}\right)$.
Of course, given $F(x)$, we can verify that $F^{\prime}(x)=f(x)$. Do it! It is good review for the upcoming final exam.
Theorem 142. (Fundamental Theorem of Calculus, "first part") Let $f(x)$ be continuous on $[a, b]$. Then $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$ is an antiderivative of f. In other words,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} f(t) \mathrm{d} t=f(x)
$$

What we saw earlier is often called the "second part".
Next time, we'll think about why the Fundamental Theorem of Calculus is true.

Example 143. Compute the following derivatives:

(a) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{2}^{x} \frac{1}{t} \mathrm{~d} t$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{2}^{x^{2}} \frac{1}{t} \mathrm{~d} t$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{0}^{x} e^{t^{2}} \mathrm{~d} t$ and $\frac{\mathrm{d}}{\mathrm{d} x} \int_{x}^{0} e^{t^{2}} \mathrm{~d} t$
(d) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{2 x^{2}}^{3 x^{2}} e^{t^{2}} \mathrm{~d} t$

Solution.

(a) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{1}^{x} \frac{1}{t} \mathrm{~d} t=\frac{1}{x}$ Comment. Indeed, $\int_{2}^{x} \frac{1}{t} \mathrm{~d} t=\ln (x)-\ln (2)$ which has derivative $\frac{1}{x}$.
However, the point is that we can determine the derivative of the integral without computing the integral itself (thus avoiding $\ln (x)$). This is crucial in the last two parts, because the antiderivative of $e^{x^{2}}$ cannot be expressed in terms of functions we are familiar with.
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{2}^{x^{2}} \frac{1}{t} \mathrm{~d} t=\frac{1}{x^{2}} \cdot 2 x=\frac{2}{x}$

Step by step. Writing $f(x)=\int_{1}^{x} \frac{1}{t} \mathrm{~d} t$, we are asked for $\frac{\mathrm{d}}{\mathrm{d} x} f\left(x^{2}\right)=f^{\prime}\left(x^{2}\right) \cdot 2 x$.
From the first part, we know that $f^{\prime}(x)=\frac{1}{x}$.
For comparison. Again, we can (but shouldn't) compute $\int_{2}^{x^{2}} \frac{1}{t} \mathrm{~d} t=\ln \left(x^{2}\right)-\ln (2)=2 \ln (x)-\ln (2)$.
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{0}^{x} e^{t^{2}} \mathrm{~d} t=e^{x^{2}}$ and $\frac{\mathrm{d}}{\mathrm{d} x} \int_{x}^{0} e^{t^{2}} \mathrm{~d} t=\frac{\mathrm{d}}{\mathrm{d} x}\left[-\int_{0}^{x} e^{t^{2}} \mathrm{~d} t\right]=-e^{x^{2}}$
(d) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{2 x^{2}}^{3 x^{2}} e^{t^{2}} \mathrm{~d} t=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{0}^{3 x^{2}} e^{t^{2}} \mathrm{~d} t-\int_{0}^{2 x^{2}} e^{t^{2}} \mathrm{~d} t\right]=e^{\left(3 x^{2}\right)^{2}} \cdot 6 x-e^{\left(2 x^{2}\right)^{2}} \cdot 4 x=6 x e^{9 x^{4}}-4 x e^{4 x^{4}}$

