Sketch of Lecture 35

The following rules are satisfied by definite integrals.

Think about each rule and make sure that it makes sense using the net area interpretation of the integral.

(1)
$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

(2)
$$\int_{a}^{a} f(x)dx = 0$$

(3)
$$\int_{a}^{b} kf(x)dx = k\int_{a}^{b} f(x)dx$$

(4)
$$\int_{a}^{b} [f(x) \pm g(x)]dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

(5)
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

(6) min of f on $[a,b] \leq \frac{1}{b-a}\int_{a}^{b} f(x)dx \leq \max \text{ of } f \text{ on } [a,b]$

$$\xrightarrow[\text{average of } f \text{ on } [a,b] \leq \frac{1}{b-a}\int_{a}^{b} f(x)dx \leq \max \text{ of } f \text{ on } [a,b]$$

(7) If $f(x) \geq g(x)$ for all $x \in [a,b]$, then
$$\int_{a}^{b} f(x)dx \geq \int_{a}^{b} g(x)dx.$$

Example 140. Suppose that

$$\int_{1}^{3} f(x) dx = 4, \quad \int_{2}^{3} f(x) dx = 5, \quad \int_{1}^{3} g(x) dx = 3.$$

(a) Determine $\int_{1}^{2} f(x) dx$. (b) Determine $\int_{1}^{3} [f(x) + g(x)] dx$ and $\int_{1}^{3} [7f(x) - g(x)] dx$. What about $\int_{1}^{3} f(x)g(x) dx$? (c) Determine $\int_{3}^{1} \sqrt{5} f(x) dx$.

Solution.

(a)
$$\int_{1}^{2} f(x) dx = \int_{1}^{3} f(x) dx - \int_{2}^{3} f(x) dx = 4 - 5 = -1$$

(b)
$$\int_{1}^{3} [f(x) + g(x)] dx = \int_{1}^{3} f(x) dx + \int_{1}^{3} g(x) dx = 4 + 3 = 7$$

$$\int_{1}^{3} [7f(x) - g(x)] dx = 7 \int_{1}^{3} f(x) dx - \int_{1}^{3} g(x) dx = 7 \cdot 4 - 3 = 25$$

From the given information, we cannot determine
$$\int_{1}^{3} f(x)g(x) dx$$
. Explain why!
(c)
$$\int_{3}^{1} \sqrt{5} f(x) dx = -\sqrt{5} \int_{1}^{3} f(x) dx = -4\sqrt{5}$$

Armin Straub straub@southalabama.edu **Example 141.** Compute $\int_0^2 \sqrt{4-x^2} dx$.

Solution. Make a sketch! The area is the quarter of a circle with radius 2, which we know equals $\frac{1}{4} \cdot \pi \cdot 2^2 = \pi$. Hence, $\int_{-2}^{2} \sqrt{4 - x^2} dx = \pi$.

Comment. Make sure to realize that it is not at all obvious what an antiderivative F(x) of $f(x) = \sqrt{4-x^2}$ should be. In Calculus II you will learn techniques to find $F(x) = \frac{1}{2}x\sqrt{4-x^2} + 2\arcsin(\frac{x}{2})$.

Of course, given F(x), we can verify that F'(x) = f(x). Do it! It is good review for the upcoming final exam.

Theorem 142. (Fundamental Theorem of Calculus, "first part") Let f(x) be continuous on [a,b]. Then $F(x) = \int_{a}^{x} f(t) dt$ is an antiderivative of f. In other words,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \mathrm{d}t = f(x).$$

What we saw earlier is often called the "second part".

Next time, we'll think about why the Fundamental Theorem of Calculus is true.

Example 143. Compute the following derivatives:

(a)
$$\frac{d}{dx} \int_{2}^{x} \frac{1}{t} dt$$

(b)
$$\frac{d}{dx} \int_{2}^{x^{2}} \frac{1}{t} dt$$

(c)
$$\frac{d}{dx} \int_{0}^{x} e^{t^{2}} dt \text{ and } \frac{d}{dx} \int_{x}^{0} e^{t^{2}} dt$$

(d)
$$\frac{d}{dx} \int_{2x^{2}}^{3x^{2}} e^{t^{2}} dt$$

Solution.

(a) $\frac{d}{dx} \int_{1}^{x} \frac{1}{t} dt = \frac{1}{x}$ **Comment.** Indeed, $\int_{2}^{x} \frac{1}{t} dt = \ln(x) - \ln(2)$ which has derivative $\frac{1}{x}$.

However, the point is that we can determine the derivative of the integral without computing the integral itself (thus avoiding $\ln(x)$). This is crucial in the last two parts, because the antiderivative of e^{x^2} cannot be expressed in terms of functions we are familiar with.

(b)
$$\frac{d}{dx} \int_{2}^{x^{2}} \frac{1}{t} dt = \frac{1}{x^{2}} \cdot 2x = \frac{2}{x}$$

Step by step. Writing $f(x) = \int_{1}^{x} \frac{1}{t} dt$, we are asked for $\frac{d}{dx} f(x^{2}) = f'(x^{2}) \cdot 2x$.
From the first part, we know that $f'(x) = \frac{1}{x}$.
For comparison. Again, we can (but shouldn't) compute $\int_{2}^{x^{2}} \frac{1}{t} dt = \ln(x^{2}) - \ln(2) = 2\ln(x) - \ln(2)$
(c) $\frac{d}{dx} \int_{0}^{x} e^{t^{2}} dt = e^{x^{2}}$ and $\frac{d}{dx} \int_{x}^{0} e^{t^{2}} dt = \frac{d}{dx} \left[-\int_{0}^{x} e^{t^{2}} dt \right] = -e^{x^{2}}$
(d) $\frac{d}{dx} \int_{2x^{2}}^{3x^{2}} e^{t^{2}} dt = \frac{d}{dx} \left[\int_{0}^{3x^{2}} e^{t^{2}} dt - \int_{0}^{2x^{2}} e^{t^{2}} dt \right] = e^{(3x^{2})^{2}} \cdot 6x - e^{(2x^{2})^{2}} \cdot 4x = 6x e^{9x^{4}} - 4x e^{4x^{4}}$

Armin Straub straub@southalabama.edu