Example 138. (cont'd)

(a) Compute the (exact) average value of $f(x)=\frac{1}{\sqrt[3]{x}}$ on $[1,3]$.
(b) Estimate the average value of $f(x)=\frac{1}{\sqrt[3]{x}}$ on $[1,3]$ using a Riemann sum with 3 intervals and midpoints.
(c) Write down an estimate for the average value of $f(x)=\frac{1}{\sqrt[3]{x}}$ on $[1,3]$ using a Riemann sum with n intervals and midpoints. (Use Σ-notation.)

Solution.

(a) The average value is $\frac{1}{3-1} \int_{1}^{3} \frac{1}{\sqrt[3]{x}} \mathrm{~d} x=\frac{1}{2}\left[\frac{3}{2} x^{2 / 3}\right]_{1}^{3}=\frac{1}{2}\left(\frac{3}{2} \cdot 3^{2 / 3}-\frac{3}{2}\right)=\frac{3}{4}\left(3^{2 / 3}-1\right)$.
(b) Each interval has length $\frac{3-1}{3}=\frac{2}{3}$. The first interval is $\left[1,1+\frac{2}{3}\right]=\left[1, \frac{5}{3}\right]$ and has midpoint $\frac{4}{3}$.

The 3 midpoints therefore are $\frac{4}{3}, \frac{4}{3}+\frac{2}{3}=2,2+\frac{2}{3}=\frac{8}{3}$ (each is $\frac{2}{3}$ after the previous).
The estimate for the average value is

$$
\frac{1}{3-1}\left(\frac{2}{3} f\left(\frac{4}{3}\right)+\frac{2}{3} f(2)+\frac{2}{3} f\left(\frac{8}{3}\right)\right)=\frac{1}{3}\left(f\left(\frac{4}{3}\right)+f(2)+f\left(\frac{8}{3}\right)\right)=\frac{1}{3}\left(\sqrt[3]{\frac{3}{4}}+\frac{1}{\sqrt[3]{2}}+\sqrt[3]{\frac{3}{8}}\right) \approx 0.808
$$

[For comparison, the exact average is $\frac{3}{4}\left(3^{2 / 3}-1\right) \approx 0.810$.]
(c) Each interval has length $\frac{3-1}{n}=\frac{2}{n}$. The first interval is $\left[1,1+\frac{2}{n}\right]$ and has midpoint $1+\frac{1}{n}$.

The n midpoints therefore are $1+\frac{1}{n}, 1+\frac{1}{n}+\frac{2}{n}, 1+\frac{1}{n}+2 \cdot \frac{2}{n}, \ldots, 1+\frac{1}{n}+(n-1) \cdot \frac{2}{n}$ (each is $\frac{2}{n}$ after the previous).
The estimate for the average value is:

$$
\frac{1}{3-1} \sum_{k=0}^{n-1} \frac{2}{n} f\left(1+\frac{1}{n}+k \cdot \frac{2}{n}\right)=\frac{1}{n} \sum_{k=0}^{n-1} f\left(1+\frac{1}{n}+k \cdot \frac{2}{n}\right)
$$

[... average vs median ...]
Example 139. Let $f(x)=6 x^{2}-3 x^{3}$.
(a) Compute $\int_{0}^{2} f(x) \mathrm{d} x$.
(b) What is the average value of $f(x)$ for x in $[0,2]$?
(c) What are the minimum and maximum value of $f(x)$ for x in $[0,2]$?

Solution.
(a) $\int_{0}^{2} f(x) \mathrm{d} x=\int_{0}^{2}\left(6 x^{2}-3 x^{3}\right) \mathrm{d} x=\left[2 x^{3}-\frac{3}{4} x^{4}\right]_{0}^{2}=\left(2 \cdot 2^{3}-\frac{3}{4} \cdot 16\right)-0=4$
(b) The average value is $\frac{1}{2-0} \int_{0}^{2} f(x) \mathrm{d} x=\frac{1}{2} \cdot 4=2$.
(c) Minimum value: $f(0)=f(2)=0$

Maximum value: $f\left(\frac{4}{3}\right)=\frac{32}{9} \approx 3.55$
(Fill in all the details!)

