Example 122. Evaluate $\sum_{k=2}^{5} 2^{-k}$.
Solution. $\sum_{k=2}^{5} 2^{-k}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=\frac{8+4+2+1}{32}=\frac{15}{32}$

Example 123. Write $\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}$ using sigma notation.
Solution. $\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}=\sum_{k=1}^{5} \frac{1}{2 k+1}$ or, for instance, $\sum_{k=2}^{6} \frac{1}{2 k-1}$ or $\sum_{k=0}^{4} \frac{1}{2 k+3}$

Example 124. Write the following sums using sigma notation.
(a) $f(0)+f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)+f(1)+f\left(\frac{5}{4}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{7}{4}\right)$
(b) $f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)+f(1)+f\left(\frac{5}{4}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{7}{4}\right)+f(2)$
(c) $f\left(\frac{1}{8}\right)+f\left(\frac{3}{8}\right)+f\left(\frac{5}{8}\right)+f\left(\frac{7}{8}\right)+f\left(\frac{9}{8}\right)+f\left(\frac{11}{8}\right)+f\left(\frac{13}{8}\right)+f\left(\frac{15}{8}\right)$

Solution.

(a) $\sum_{k=0}^{7} f\left(\frac{k}{4}\right)$ Important note. $\frac{1}{4}\left[f(0)+f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)+f(1)+f\left(\frac{5}{4}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{7}{4}\right)\right]$ is the Riemann sum for the area between the x-axis and $f(x)$ for x in $[0,2]$ using 8 intervals (of width $\frac{1}{4}$) and left endpoints.
(b) $\sum_{k=1}^{8} f\left(\frac{k}{4}\right)$

Important note. $\frac{1}{4}$ times this is the Riemann sum for the area between the x-axis and $f(x)$ for x in $[0,2]$ using 8 intervals (of width $\frac{1}{4}$) and right endpoints.
(c) $\sum_{k=0}^{7} f\left(\frac{2 k+1}{8}\right)$ or $\sum_{k=1}^{8} f\left(\frac{2 k-1}{8}\right)$

Important note. $\frac{1}{4}$ times this is the Riemann sum for the area between the x-axis and $f(x)$ for x in $[0,2]$ using 8 intervals (of width $\frac{1}{4}$) and midpoints.

Example 125. Let A be the area between the x-axis and $f(x)$ for x in $[1,3]$.
(a) Write a Riemann sum for A using n intervals (of equal size) and midpoints.
(b) Evaluate the Riemann sum for $f(x)=\frac{1}{x}$ and $n=3$.

Solution.

(a) Each interval has length $\frac{3-1}{n}=\frac{2}{n}$, so that the midpoints are $\frac{2}{n}$ apart. The first interval is $\left[1,1+\frac{2}{n}\right]$ and has midpoint $1+\frac{1}{n}$. Hence the k-th interval has midpoint $1+\frac{1}{n}+(k-1) \frac{2}{n}=1+\frac{2 k-1}{n}$.
Hence, the requested Riemann sum is $\sum_{k=1}^{n} \frac{2}{n} f\left(1+\frac{2 k-1}{n}\right)$.
(b) $\sum_{k=1}^{3} \frac{2}{3} f\left(1+\frac{2 k-1}{3}\right)=\frac{2}{3}\left(f\left(\frac{4}{3}\right)+f\left(\frac{6}{3}\right)+f\left(\frac{8}{3}\right)\right)=\frac{2}{3}\left(\frac{3}{4}+\frac{3}{6}+\frac{3}{8}\right)=\frac{13}{12} \approx 1.0833$

Comment. The true area is $A=\ln (3) \approx 1.0986$.

(Averages)

The average value of $f(x)$ for x in $[a, b]$ is $\frac{1}{b-a} A$, where A is the area between the x-axis and $f(x)$ for x in $[a, b]$.
Soon. average of f on $[a, b]=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x$

Example 126. Estimate the average value of $f(x)=\frac{1}{x}$ on $[1,3]$ using a Riemann sum with 3 intervals and midpoints.
Solution. The average is $\frac{1}{3-1} A=\frac{1}{2} A$, where A is the area between the x-axis and $f(x)=\frac{1}{x}$ for x in $[1,3]$. In the previous example, we estimated using a Riemann sum with 3 intervals and midpoints that $A \approx \frac{13}{12}$. Hence, our estimate for the average is $\frac{1}{2} \frac{13}{12}=\frac{13}{24} \approx 0.5417$.
Comment. The maximum of $f(x)=\frac{1}{x}$ on $[1,3]$ is $\frac{1}{1}=1$ and the minimum is $\frac{1}{3}$. The average had to be somewhere inbetween.
Comment. Note that $\frac{1}{2}$ times the Riemann sum is $\frac{1}{3}\left(f\left(\frac{4}{3}\right)+f\left(\frac{6}{3}\right)+f\left(\frac{8}{3}\right)\right)$, which we recognize as precisely the average of three of the function values.

