Let A be the area between the x-axis and $f(x)$ for x in $[a, b]$.
Soon. $A=\int_{a}^{b} f(x) \mathrm{d} x$
Sums approximating the area A as in Example 118 are called Riemann sums:
(Riemann sums) In the most general case, we divide $[a, b]$ according to $a=x_{0}<x_{1}<\cdots<$ $x_{m}=b$. In each of the m subintervals $\left[x_{i-1}, x_{i}\right], i=1,2, \ldots, m$, we select a point c_{i}.

$$
\text { Riemann sum }=\underbrace{\left(x_{1}-x_{0}\right) f\left(c_{1}\right)}_{\begin{array}{c}
\text { rectangle } \# 1 \\
\text { width }=x_{1}-x_{0} \\
\text { height }=f\left(c_{1}\right)
\end{array}}+\underbrace{\left(x_{2}-x_{1}\right) f\left(c_{2}\right)}_{\begin{array}{c}
\text { rectangle } \# 2 \\
\text { width }=x_{2}-x_{1} \\
\text { height }=f\left(c_{2}\right)
\end{array}}+\ldots+\underbrace{\left(x_{m}-x_{m-1}\right) f\left(c_{m}\right)}_{\begin{array}{l}
\text { rectangle } \# m \\
\text { width }=x_{m}-x_{m}-1 \\
\text { height }=f\left(c_{m}\right)
\end{array}}
$$

Often, we choose the subintervals to be of the same length, say, Δx.
Typical natural choices for c_{i} in $\left[x_{i-1}, x_{i}\right]$ are:

- $c_{i}=x_{i-1}$ (left endpoint),
- $c_{i}=x_{i}$ (right endpoint),
- $c_{i}=\frac{x_{i-1}+x_{i}}{2}$ (midpoint),
- c_{i} equal to where f is maximal on $\left[x_{i-1}, x_{i}\right]$ (resulting in an "upper Riemann sum"),
- c_{i} equal to where f is minimal on $\left[x_{i-1}, x_{i}\right]$ (resulting in a "lower Riemann sum").

Example 119. Sketch the rectangles associated with the Riemann sum for the area between the x-axis and $f(x)=4-x^{2}$ for x in $[0,2]$ using 4 intervals (of equal size) and
(a) left endpoints,
(b) right endpoints,
(c) midpoints.

Solution. Do it! You can also look at these in the GeoGebra app we explored in class:
https://www.geogebra.org/m/zwsgarcp
Example 120. Again, let A be the area between the x-axis and $f(x)=4-x^{2}$ for x in $[0,2]$. Write down a Riemann sum for A using 8 intervals (of equal size) and
(a) left endpoints,
(b) right endpoints,
(c) midpoints.

Solution.
(a) The Riemann sum is $\frac{1}{4}\left[f(0)+f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)+f(1)+f\left(\frac{5}{4}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{7}{4}\right)\right]=\frac{93}{16} \approx 5.813$. Since this is also the "upper sum", we have $A<5.813$.
(b) The Riemann sum is $\frac{1}{4}\left[f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)+f(1)+f\left(\frac{5}{4}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{7}{4}\right)+f(2)\right]=\frac{77}{16} \approx 4.813$. Since this is also the "lower sum", we have $A>4.813$.
(c) The Riemann sum is $\frac{1}{4}\left[f\left(\frac{1}{8}\right)+f\left(\frac{3}{8}\right)+f\left(\frac{5}{8}\right)+f\left(\frac{7}{8}\right)+f\left(\frac{9}{8}\right)+f\left(\frac{11}{8}\right)+f\left(\frac{13}{8}\right)+f\left(\frac{15}{8}\right)\right]=\frac{171}{32} \approx$ 5.344 . This is a very good estimate for A.

As we can see from the previous example, it is desirable to have a better way to write sums with lots of terms.

(Sigma notation)
 $\sum_{k=r}^{s} a_{k}=a_{r}+a_{r+1}+\ldots+a_{s-1}+a_{s}$

For instance, $\sum_{k=2}^{6} a_{k}=a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$.

Example 121. Evaluate $\sum_{k=2}^{4} \frac{k}{k+1}$.
Solution. $\sum_{k=2}^{4} \frac{k}{k+1}=\frac{2}{3}+\frac{3}{4}+\frac{4}{5}=\frac{40+45+48}{60}=\frac{133}{60}$

